Created
January 4, 2019 08:28
-
-
Save jonathanoheix/e68a1fead378647e4d50b8429ae7d341 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# show the confusion matrix of our predictions | |
# compute predictions | |
predictions = model.predict_generator(generator=validation_generator) | |
y_pred = [np.argmax(probas) for probas in predictions] | |
y_test = validation_generator.classes | |
class_names = validation_generator.class_indices.keys() | |
from sklearn.metrics import confusion_matrix | |
import itertools | |
def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues): | |
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
plt.figure(figsize=(10,10)) | |
plt.imshow(cm, interpolation='nearest', cmap=cmap) | |
plt.title(title) | |
plt.colorbar() | |
tick_marks = np.arange(len(classes)) | |
plt.xticks(tick_marks, classes, rotation=45) | |
plt.yticks(tick_marks, classes) | |
fmt = '.2f' | |
thresh = cm.max() / 2. | |
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
plt.text(j, i, format(cm[i, j], fmt), | |
horizontalalignment="center", | |
color="white" if cm[i, j] > thresh else "black") | |
plt.ylabel('True label') | |
plt.xlabel('Predicted label') | |
plt.tight_layout() | |
# compute confusion matrix | |
cnf_matrix = confusion_matrix(y_test, y_pred) | |
np.set_printoptions(precision=2) | |
# plot normalized confusion matrix | |
plt.figure() | |
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Normalized confusion matrix') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment