My fork of qlora (but using the --full-finetune
option), commit b5771f3caa9a5ea3ec397526a09720e957dc03d0 (main branch as of 2023-10-02):
6x 80GB a100s on runpod.io
Dataset: https://hf.co/datasets/jondurbin/airoboros-3.0 (private currently, until fine-tunes are finished)
Script:
export BASE_DIR=/workspace
export WANDB_API_KEY=[redacted]
export WANDB_PROJECT=airoboros-m-7b-3.0
accelerate launch $BASE_DIR/qlora/train.py \
--model_name_or_path $BASE_DIR/mistral-7b \
--working_dir $BASE_DIR/$WANDB_PROJECT-checkpoints \
--output_dir $BASE_DIR/$WANDB_PROJECT \
--num_train_epochs 4 \
--logging_steps 1 \
--save_strategy steps \
--save_steps 30 \
--save_total_limit 1 \
--data_seed 11422 \
--evaluation_strategy steps \
--eval_dataset_size 0.02 \
--eval_steps 15 \
--max_new_tokens 4096 \
--dataloader_num_workers 3 \
--logging_strategy steps \
--optim adamw_torch \
--do_train \
--full_finetune \
--bits 16 \
--bf16 \
--dataset $BASE_DIR/conversations.json \
--dataset_format airoboros_chat \
--model_max_len 4096 \
--per_device_train_batch_size 3 \
--learning_rate 2.2e-5 \
--lr_scheduler_type constant \
--expand_conversations \
--warmup_ratio 0.005 \
--weight_decay 0.0 \
--seed 11422 \
--report_to wandb \
--deepspeed deepspeed-7b.json \
--gradient_checkpointing
deepspeed-7b.json
:
{
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"bf16": {
"enabled": true
},
"zero_optimization": {
"stage": 2,
"contiguous_gradients": true,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8
}
}