Created
March 2, 2018 17:35
-
-
Save jongbinjung/d7dbc0df2a23d1581f70a3af974615dd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
results <- foreach(i=1:1000, .combine = bind_rows) %:% | |
foreach(method=c("binomial", "quasibinomial"), .combine = bind_rows) %dopar% { | |
beta <- 0.1 | |
df <- data.frame(id = rep(1:1000, 2)) %>% | |
mutate(m = rnorm(2000, 0, 1), | |
x = rnorm(2000, m, 2), | |
e = rnorm(2000, 0, beta / 2), | |
y = inv_logit(1 + beta*x+e)) %>% | |
group_by(id) %>% | |
mutate(p = rbeta(1, 2, 2), | |
w = c(p[1], 1-p[1])) %>% | |
ungroup() | |
df_ <- df %>% | |
group_by(id) %>% | |
summarize_at(vars(x,y), funs(weighted.mean(., w))) | |
bind_rows( | |
broom::tidy(glm(y ~ x, family = method, data = df, weights = w)) %>% | |
mutate(type = "weighted", method = method), | |
broom::tidy(glm(y ~ x, family = method, data = df_)) %>% | |
mutate(type = "aggregated", method = method) | |
) %>% | |
filter(term == "x") | |
} | |
results %>% | |
mutate(lower = estimate - 2*std.error, | |
upper = estimate + 2*std.error, | |
good = beta < upper & beta > lower) %>% | |
group_by(type, method) %>% | |
summarize(coverage = mean(good), | |
bias = mean(estimate) - beta, | |
estimated_se = mean(std.error), | |
empirical_se = sd(estimate)) | |
#> type method coverage bias estimated_se empirical_se | |
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> | |
#> 1 aggregated binomial 1.000 -4.589e-04 0.0415065 0.0007334 | |
#> 2 aggregated quasibinomial 0.901 -4.251e-04 0.0007210 0.0007770 | |
#> 3 weighted binomial 1.000 -6.743e-05 0.0322919 0.0005430 | |
#> 4 weighted quasibinomial 0.929 -3.488e-05 0.0005052 0.0005649 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment