Created
May 12, 2021 02:55
-
-
Save jonrobinson2/d79a43f88ae1ad88affa893ba55b6df9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(tabulizer) | |
require(dplyr) | |
require(datapasta) | |
require(ggplot2) | |
require(gridExtra) | |
jr=theme(panel.background = element_rect(fill = NA, colour = "black", size = 0.25), | |
panel.border = element_blank(), | |
panel.grid.major = element_line(colour = "black", size = 0.05), | |
panel.grid.minor = element_line(colour = "black", size = 0.05), | |
plot.title=element_text(size=22, family="Helvetica Neue Light"), | |
axis.title.x=element_text(size=18, family="Helvetica Neue Light"), | |
axis.text.x=element_text(colour="black", size=18, family="Helvetica Neue Light"), | |
axis.title.y=element_text(size=18, family="Helvetica Neue Light"), | |
axis.text.y=element_text(colour="black",size=18, family="Helvetica Neue Light"), | |
strip.text.x = element_text(size = 22,family="Helvetica Neue Light"), | |
strip.text.y = element_text(size = 22,family="Helvetica Neue Light"), | |
legend.title = element_text(size=18, family="Helvetica Neue Light",face="bold"), | |
legend.text = element_text(size=18, family="Helvetica Neue Light"), | |
strip.background = element_rect(colour = "grey", fill = "white")) | |
covi = extract_tables(file = 'https://www.liebertpub.com/doi/suppl/10.1089/elj.2017.0478/suppl_file/Supp_Appendix.pdf') | |
vars = covi[[1]][1,] | |
covi = rbind(rbind(data.frame(covi[[1]][2:nrow(covi[[1]]),]),data.frame(covi[[2]])), data.frame(covi[[3]])) | |
names(covi) = vars | |
covi[,2:ncol(covi)] = apply(covi[,2:ncol(covi)],2, as.numeric) | |
covi = merge(covi, data.frame( | |
stringsAsFactors = FALSE, | |
State = c("OR","WA","UT","IL", | |
"MD","HI","CO","ND","VT","CA","MA","VA","MI","ME", | |
"MN","NJ","NY","ID","RI","CT","MT","NE","NC", | |
"IA","WI","WY","LA","NV","SD","AZ","NM","PA", | |
"DE","OH","WV","AK","OK","KS","AL","FL","IN", | |
"AR","KY","SC","NH","TN","MS","MO","GA","TX"), | |
'2020 COVI' = c(-1.69,-1.66,-0.93,-0.85, | |
-0.74,-0.71,-0.69,-0.66,-0.64,-0.62,-0.52,-0.51, | |
-0.5,-0.39,-0.39,-0.26,-0.25,-0.12,-0.1,-0.07, | |
-0.07,-0.05,-0.03,0.05,0.05,0.08,0.15,0.17, | |
0.19,0.21,0.25,0.29,0.32,0.32,0.33,0.34,0.37,0.38, | |
0.46,0.46,0.51,0.54,0.61,0.74,0.78,0.8,0.86, | |
0.92,0.98,1.29) | |
) ,by='State', all=T) | |
covi$Rank_2016 = rank(-covi$`2016 COVI`, ties.method = 'first') | |
covi$Rank_2020 = rank(-covi$X2020.COVI, ties.method = 'first') | |
covi$Rank_Diff = covi$Rank_2020 - covi$Rank_2016 | |
covi$Covi_Diff = covi$X2020.COVI - covi$`2016 COVI` | |
####### | |
cvep = data.frame( | |
stringsAsFactors = FALSE, | |
check.names = FALSE, | |
State = c("Alabama","Alaska","Arizona","Arkansas", | |
"California","Colorado","Connecticut","Delaware", | |
"District of Columbia","Florida","Georgia","Hawaii", | |
"Idaho","Illinois","Indiana","Iowa","Kansas","Kentucky", | |
"Louisiana","Maine","Maryland","Massachusetts", | |
"Michigan","Minnesota","Mississippi","Missouri","Montana", | |
"Nebraska","Nevada","New Hampshire","New Jersey", | |
"New Mexico","New York","North Carolina","North Dakota", | |
"Ohio","Oklahoma","Oregon","Pennsylvania", | |
"Rhode Island","South Carolina","South Dakota","Tennessee", | |
"Texas","Utah","Vermont","Virginia","Washington", | |
"West Virginia","Wisconsin","Wyoming"), | |
"VEP_2016" = c("59.10%","61.50%","56.10%","53.20%", | |
"58.20%","71.90%","64.90%","64.40%","60.70%","65.60%", | |
"59.80%","43.20%","60.90%","63.10%","57.90%", | |
"69.10%","59.70%","59.60%","60.60%","72.90%","67.00%", | |
"68.30%","65.70%","74.70%","55.20%","62.20%","64.30%", | |
"64.00%","57.40%","72.50%","65.80%","54.90%", | |
"57.20%","64.90%","61.70%","64.20%","52.30%","68.00%", | |
"63.60%","59.70%","57.30%","60.00%","51.80%","51.40%", | |
"57.90%","64.80%","66.10%","65.70%","50.20%", | |
"69.50%","60.20%"), | |
'VEP_2020' = c("63.10%","68.80%","65.90%","56.10%", | |
"68.50%","76.40%","71.50%","70.70%","64.10%","71.70%", | |
"68.00%","57.50%","68.00%","67.00%","61.40%", | |
"73.20%","65.90%","64.90%","64.30%","76.30%","71.10%", | |
"72.10%","73.90%","80.00%","60.20%","65.70%","73.10%", | |
"69.90%","65.40%","75.50%","75.30%","61.30%", | |
"63.60%","71.50%","64.50%","67.40%","55.00%","75.50%", | |
"71.10%","65.30%","64.50%","66.00%","59.80%","60.40%", | |
"69.20%","74.20%","73.00%","75.70%","57.60%", | |
"75.80%","64.60%")) | |
cvep$VEP_2016 = as.numeric(gsub(pattern = '%',replacement = '',cvep$VEP_2016))/100 | |
cvep$VEP_2020 = as.numeric(gsub(pattern = '%',replacement = '',cvep$VEP_2020))/100 | |
cvep = cvep[cvep$State!='District of Columbia',] | |
cvep = merge(cvep,data.frame(StateName = state.abb, State = state.name),by='State') | |
cvep$Rank_2016 = rank(-cvep$VEP_2016,ties.method = 'first') | |
cvep$Rank_2020 = rank(-cvep$VEP_2020, ties.method = 'first') | |
cvep$Rank_Diff = cvep$Rank_2020 - cvep$Rank_2016 | |
cvep$VEP_Diff = cvep$VEP_2020 - cvep$VEP_2016 | |
cvep$State=NULL | |
full = merge(cvep, covi, by.x='StateName', by.y='State', all = T, suffixes = c('_Turnout','_COVI')) | |
grid.arrange( | |
ggplot(full, aes(Rank_Diff_COVI, Rank_Diff_Turnout)) + | |
geom_text(aes(label=StateName), alpha=.5, size=4) + | |
jr + | |
geom_smooth(method='lm', se=F, col='black', size=.5) + | |
scale_y_continuous('Change in VEP Turnout Rank \n Source: US Elections Project \n (Positive is Increased Turnout)', | |
limits=c(-25, 25)) + | |
scale_x_continuous('Change in Cost of Voting Index Rank \n (Positive Decreased Costs)', | |
limits=c(-50, 50)) + | |
geom_hline(yintercept = 0, linetype=2) + geom_vline(xintercept = 0, linetype=2) + | |
ggtitle('Comparing CVEP Turnout & \n Cost of Voting Index Rank Changes \n (2016 to 2020)') | |
, | |
ggplot(full, aes(-Covi_Diff, VEP_Diff)) + | |
geom_text(aes(label=StateName), alpha=.5, size=4, col='forestgreen') + | |
jr + | |
geom_smooth(method='lm', se=F, col='forestgreen', size=.5) + | |
scale_y_continuous('Change in VEP Turnout \n Source: US Elections Project', | |
limits=c(0, .2)) + | |
scale_x_continuous('Change in Cost of Voting Index \n (Positive Decreases Costs)', | |
limits=c(-2, 2)) + | |
geom_hline(yintercept = 0, linetype=2, col='forestgreen') + geom_vline(xintercept = 0, linetype=2, col='forestgreen') + | |
ggtitle('Comparing CVEP Turnout & \n Cost of Voting Index Changes \n (2016 to 2020)') | |
, | |
nrow=1) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment