Last active
September 6, 2024 10:04
-
-
Save joostd/808c7ba23459c0507f457d27843b30af to your computer and use it in GitHub Desktop.
Recover RSA key from modulus and private exponent
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# recover RSA private key file using public key (n,e) and private exponent d | |
# python recover.py | openssl asn1parse -genconf - -out key.der | |
from math import gcd | |
# example Private-Key (512 bit, 2 primes) | |
modulus=0x00bacb716af4a701ea525c1fc45c7798598a966432a44a347d53054c691bd5a7c60fe717b5f55de46ea8afd1525a4b08b098b7eb0f51d58daf690ae85fcb9254b9 | |
publicExponent=0x10001 | |
privateExponent=0x217051f9679a8e09387d2d62a57af356f42c3ffba0d577d80788a74919a681c5f02b3e8422e79737fd9aff15046a91509788023aad60c39492ceddb301f0bcd1 | |
# calculate x such that (x*e) mod m == 1 (see cryptography.io RSAPublicKey) | |
def modinv(e, m): | |
x1, x2 = 1, 0 | |
a, b = e, m | |
while b > 0: | |
q, r = divmod(a, b) | |
xn = x1 - q * x2 | |
a, b, x1, x2 = b, r, x2, xn | |
return x1 % m | |
# find factor p from n,d,e (see https://nostarch.com/seriouscrypto, ch10 RSA): | |
def factor(n,d,e): | |
kphi = d*e - 1 # k * phi(n) | |
# calculate t such that k * phi(n) = 2^s * t, for some s | |
t = kphi | |
while t % 2 == 0: | |
t = divmod(t, 2)[0] | |
# calculate a and k such that (a^k)^2 = 1 mod n, | |
for a in range(2,100,2): | |
k = t | |
while k < kphi: | |
x = pow(a, k, n) | |
# check if we found a solution: | |
if x != 1 and x != (n - 1) and pow(x, 2, n) == 1: | |
p = gcd(x - 1, n) | |
return p | |
k = k*2 | |
raise Exception("could not find a factor") | |
p = factor(modulus , privateExponent, publicExponent) | |
# Verify prime factorisation: | |
q = modulus//p | |
assert (p*q) == modulus | |
# Calculate CRT params: | |
exp1 = privateExponent % (p - 1) | |
exp2 = privateExponent % (q - 1) | |
coeff = modinv(q,p) | |
print(f""" | |
asn1=SEQUENCE:private_key | |
[private_key] | |
version=INTEGER:0 | |
modulus=INTEGER:{modulus} | |
publicExponent=INTEGER:{publicExponent} | |
privateExponent=INTEGER:{privateExponent} | |
prime1=INTEGER:{p} | |
prime2=INTEGER:{q} | |
exponent1=INTEGER:{exp1} | |
exponent2=INTEGER:{exp2} | |
coefficient=INTEGER:{coeff} | |
""") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment