Created
April 3, 2013 21:44
-
-
Save jorisvandenbossche/5305681 to your computer and use it in GitHub Desktop.
test link
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "test_hierarchical_index" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "heading", | |
| "level": 1, | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "Turin stationary data: Alphasenso CO sensor data investigation" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "link [example link](#Test met de heading)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "%pylab\n", | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import datetime as dt\n", | |
| "import pandas as pd\n", | |
| "import os" | |
| ], | |
| "language": "python", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| "Welcome to pylab, a matplotlib-based Python environment [backend: Qt4Agg].\n", | |
| "For more information, type 'help(pylab)'.\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 1 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "arrays = [['SB1', 'SB1', 'SB2', 'SB2', 'SB3', 'SB3', 'SB4', 'SB4'],\n", | |
| " ['co_alpha', 'temp', 'co_alpha', 'temp', 'co_alpha', 'temp', 'co_alpha', 'temp']]" | |
| ], | |
| "language": "python", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "outputs": [], | |
| "prompt_number": 2 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "tuples = zip(*arrays)\n", | |
| "tuples" | |
| ], | |
| "language": "python", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 3, | |
| "text": [ | |
| "[('SB1', 'co_alpha'),\n", | |
| " ('SB1', 'temp'),\n", | |
| " ('SB2', 'co_alpha'),\n", | |
| " ('SB2', 'temp'),\n", | |
| " ('SB3', 'co_alpha'),\n", | |
| " ('SB3', 'temp'),\n", | |
| " ('SB4', 'co_alpha'),\n", | |
| " ('SB4', 'temp')]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 3 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])\n", | |
| "index" | |
| ], | |
| "language": "python", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 4, | |
| "text": [ | |
| "MultiIndex\n", | |
| "[(SB1, co_alpha), (SB1, temp), (SB2, co_alpha), (SB2, temp), (SB3, co_alpha), (SB3, temp), (SB4, co_alpha), (SB4, temp)]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 4 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "s = pd.Series(randn(8), index=index)\n", | |
| "s" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 5, | |
| "text": [ | |
| "first second \n", | |
| "SB1 co_alpha -0.672864\n", | |
| " temp -1.785706\n", | |
| "SB2 co_alpha -0.253444\n", | |
| " temp 0.012696\n", | |
| "SB3 co_alpha -1.071290\n", | |
| " temp 0.665913\n", | |
| "SB4 co_alpha -1.676434\n", | |
| " temp 0.596448" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 5 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pd.Series(randn(8), index=arrays)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 6, | |
| "text": [ | |
| "SB1 co_alpha -1.331681\n", | |
| " temp -0.786089\n", | |
| "SB2 co_alpha 2.325138\n", | |
| " temp 0.910780\n", | |
| "SB3 co_alpha 0.105687\n", | |
| " temp 0.037443\n", | |
| "SB4 co_alpha -0.832341\n", | |
| " temp -1.389372" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 6 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df = pd.DataFrame(randn(4, 8), columns=arrays)\n", | |
| "df" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB1</th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB2</th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB3</th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB4</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>-0.368326</td>\n", | |
| " <td>-0.400795</td>\n", | |
| " <td> 0.474947</td>\n", | |
| " <td>-0.145894</td>\n", | |
| " <td>-0.794057</td>\n", | |
| " <td> 0.147168</td>\n", | |
| " <td>-0.271703</td>\n", | |
| " <td>-0.739156</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 0.244511</td>\n", | |
| " <td>-0.225491</td>\n", | |
| " <td>-0.441524</td>\n", | |
| " <td>-0.017268</td>\n", | |
| " <td> 0.673915</td>\n", | |
| " <td>-0.830436</td>\n", | |
| " <td>-0.522951</td>\n", | |
| " <td>-0.088112</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 0.441055</td>\n", | |
| " <td> 0.866874</td>\n", | |
| " <td>-0.281293</td>\n", | |
| " <td>-0.892865</td>\n", | |
| " <td>-0.016720</td>\n", | |
| " <td> 0.789519</td>\n", | |
| " <td> 0.316520</td>\n", | |
| " <td>-0.947715</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 1.137661</td>\n", | |
| " <td>-0.103103</td>\n", | |
| " <td> 0.258673</td>\n", | |
| " <td>-0.801883</td>\n", | |
| " <td> 1.613163</td>\n", | |
| " <td> 1.246364</td>\n", | |
| " <td> 0.118795</td>\n", | |
| " <td>-0.960764</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "output_type": "pyout", | |
| "prompt_number": 28, | |
| "text": [ | |
| " SB1 SB2 SB3 SB4 \n", | |
| " co_alpha temp co_alpha temp co_alpha temp co_alpha temp\n", | |
| "0 -0.368326 -0.400795 0.474947 -0.145894 -0.794057 0.147168 -0.271703 -0.739156\n", | |
| "1 0.244511 -0.225491 -0.441524 -0.017268 0.673915 -0.830436 -0.522951 -0.088112\n", | |
| "2 0.441055 0.866874 -0.281293 -0.892865 -0.016720 0.789519 0.316520 -0.947715\n", | |
| "3 1.137661 -0.103103 0.258673 -0.801883 1.613163 1.246364 0.118795 -0.960764" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 28 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df['SB1']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>-0.368326</td>\n", | |
| " <td>-0.400795</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 0.244511</td>\n", | |
| " <td>-0.225491</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 0.441055</td>\n", | |
| " <td> 0.866874</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 1.137661</td>\n", | |
| " <td>-0.103103</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "output_type": "pyout", | |
| "prompt_number": 29, | |
| "text": [ | |
| " co_alpha temp\n", | |
| "0 -0.368326 -0.400795\n", | |
| "1 0.244511 -0.225491\n", | |
| "2 0.441055 0.866874\n", | |
| "3 1.137661 -0.103103" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 29 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df['SB1']['co_alpha']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 30, | |
| "text": [ | |
| "0 -0.368326\n", | |
| "1 0.244511\n", | |
| "2 0.441055\n", | |
| "3 1.137661\n", | |
| "Name: co_alpha" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 30 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df['SB1', 'co_alpha']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 31, | |
| "text": [ | |
| "0 -0.368326\n", | |
| "1 0.244511\n", | |
| "2 0.441055\n", | |
| "3 1.137661\n", | |
| "Name: (SB1, co_alpha)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 31 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.xs('temp', axis=1, level=1)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>SB1</th>\n", | |
| " <th>SB2</th>\n", | |
| " <th>SB3</th>\n", | |
| " <th>SB4</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>-0.400795</td>\n", | |
| " <td>-0.145894</td>\n", | |
| " <td> 0.147168</td>\n", | |
| " <td>-0.739156</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>-0.225491</td>\n", | |
| " <td>-0.017268</td>\n", | |
| " <td>-0.830436</td>\n", | |
| " <td>-0.088112</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 0.866874</td>\n", | |
| " <td>-0.892865</td>\n", | |
| " <td> 0.789519</td>\n", | |
| " <td>-0.947715</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>-0.103103</td>\n", | |
| " <td>-0.801883</td>\n", | |
| " <td> 1.246364</td>\n", | |
| " <td>-0.960764</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "output_type": "pyout", | |
| "prompt_number": 32, | |
| "text": [ | |
| " SB1 SB2 SB3 SB4\n", | |
| "0 -0.400795 -0.145894 0.147168 -0.739156\n", | |
| "1 -0.225491 -0.017268 -0.830436 -0.088112\n", | |
| "2 0.866874 -0.892865 0.789519 -0.947715\n", | |
| "3 -0.103103 -0.801883 1.246364 -0.960764" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 32 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df['SB1', 'test'] = 0" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 38 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB1</th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB2</th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB3</th>\n", | |
| " <th colspan=\"2\" halign=\"left\">SB4</th>\n", | |
| " <th>SB1</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>test</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>-0.368326</td>\n", | |
| " <td>-0.400795</td>\n", | |
| " <td> 0.474947</td>\n", | |
| " <td>-0.145894</td>\n", | |
| " <td>-0.794057</td>\n", | |
| " <td> 0.147168</td>\n", | |
| " <td>-0.271703</td>\n", | |
| " <td>-0.739156</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 0.244511</td>\n", | |
| " <td>-0.225491</td>\n", | |
| " <td>-0.441524</td>\n", | |
| " <td>-0.017268</td>\n", | |
| " <td> 0.673915</td>\n", | |
| " <td>-0.830436</td>\n", | |
| " <td>-0.522951</td>\n", | |
| " <td>-0.088112</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 0.441055</td>\n", | |
| " <td> 0.866874</td>\n", | |
| " <td>-0.281293</td>\n", | |
| " <td>-0.892865</td>\n", | |
| " <td>-0.016720</td>\n", | |
| " <td> 0.789519</td>\n", | |
| " <td> 0.316520</td>\n", | |
| " <td>-0.947715</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 1.137661</td>\n", | |
| " <td>-0.103103</td>\n", | |
| " <td> 0.258673</td>\n", | |
| " <td>-0.801883</td>\n", | |
| " <td> 1.613163</td>\n", | |
| " <td> 1.246364</td>\n", | |
| " <td> 0.118795</td>\n", | |
| " <td>-0.960764</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "output_type": "pyout", | |
| "prompt_number": 39, | |
| "text": [ | |
| " SB1 SB2 SB3 SB4 SB1\n", | |
| " co_alpha temp co_alpha temp co_alpha temp co_alpha temp test\n", | |
| "0 -0.368326 -0.400795 0.474947 -0.145894 -0.794057 0.147168 -0.271703 -0.739156 0\n", | |
| "1 0.244511 -0.225491 -0.441524 -0.017268 0.673915 -0.830436 -0.522951 -0.088112 0\n", | |
| "2 0.441055 0.866874 -0.281293 -0.892865 -0.016720 0.789519 0.316520 -0.947715 0\n", | |
| "3 1.137661 -0.103103 0.258673 -0.801883 1.613163 1.246364 0.118795 -0.960764 0" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 39 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df['SB1']['test']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 17, | |
| "text": [ | |
| "0 0\n", | |
| "1 0\n", | |
| "2 0\n", | |
| "3 0\n", | |
| "Name: test" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 17 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.columns" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 40, | |
| "text": [ | |
| "MultiIndex\n", | |
| "[(SB1, co_alpha), (SB1, temp), (SB2, co_alpha), (SB2, temp), (SB3, co_alpha), (SB3, temp), (SB4, co_alpha), (SB4, temp), (SB1, test)]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 40 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df['SB1']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>co_alpha</th>\n", | |
| " <th>temp</th>\n", | |
| " <th>test</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>-0.368326</td>\n", | |
| " <td>-0.400795</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 0.244511</td>\n", | |
| " <td>-0.225491</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 0.441055</td>\n", | |
| " <td> 0.866874</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 1.137661</td>\n", | |
| " <td>-0.103103</td>\n", | |
| " <td> 0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "output_type": "pyout", | |
| "prompt_number": 41, | |
| "text": [ | |
| " co_alpha temp test\n", | |
| "0 -0.368326 -0.400795 0\n", | |
| "1 0.244511 -0.225491 0\n", | |
| "2 0.441055 0.866874 0\n", | |
| "3 1.137661 -0.103103 0" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 41 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df = pd.DataFrame(randn(4, 8), columns=index)\n", | |
| "df" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": [ | |
| "Test met de heading" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| } | |
| ], | |
| "metadata": {} | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment