All notebooks in Scipy folder.
Last active
December 19, 2015 00:19
-
-
Save jorisvandenbossche/5868420 to your computer and use it in GitHub Desktop.
Scipy Notebooks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
ipython/ | |
nbconvert/ | |
pandas/ | |
scipy-sphinx-theme-master | |
scipy.org-new | |
spyder-2.1.11/ | |
spyderlib/ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline\n", | |
"import numpy as np\n", | |
"import matplotlib\n", | |
"import matplotlib.pyplot as plt\n", | |
"import pandas as pd" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print \"numpy: \", np.__version__\n", | |
"print \"pandas: \", pd.__version__\n", | |
"print \"matplotlib: \", matplotlib.__version__" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"numpy: 1.7.1\n", | |
"pandas: 0.12.0-213-gdc3ead3\n", | |
"matplotlib: 1.2.1\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df = pd.DataFrame({'A':[1,3,2,5,4,7,6], 'B':[1,1,1,1,2,2,2]})" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig, ax = plt.subplots()\n", | |
"df['A'].plot(ax=ax)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
"<matplotlib.axes.AxesSubplot at 0x89ebe10>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAD9CAYAAACROe2RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGOZJREFUeJzt3X9s1PUdx/HXackQma1d+LHQZtcgaK/8uCKsYxnbFRz+\nQDbFjll/0IIwp8kCZjFOM8dkEdyUANW6oXM0ZInoErMhAyLEnhRJRyqtGCSyOLoUYRpgBeRXS/vd\nH923PY6238/dfb7fz497PRITTy7H5+2RNx+fXGvIcRwHRESknatUH4CIiPrHBU1EpCkuaCIiTXFB\nExFpiguaiEhTXNBERJryXNCffPIJSktLe//Kzc1FTU1NEGcjIspqoVQ+B93d3Y0xY8Zg7969KCws\n9PNcRERZL6XEsXPnTowdO5bLmYgoACkt6E2bNuG+++7z6yxERJRAOHF0dHRgzJgx+PjjjzFixIi+\nFwiFfDscEZHNvNav8A1627ZtuPnmmy9bzok/ia1/LV++XPkZOB/ny6b5TpxwkJ/vYOnS5Th3zsHj\njzsYNcrBG2+oP5vMv0QIL+jXX38dlZWVok+3Rmtrq+oj+Irzmc3G+dasAebNA9rbW3HNNcDvfgf8\n9a/Ar34F/OhHwBdfqD5hcIQW9NmzZ7Fz507MmzfP7/MQURY7eRJ4+WXgqacu/+ff+hbQ3AwUFQGT\nJgFvvqnmfEETWtDXXnstjh8/jq9+9at+n0c71dXVqo/gK85nNtvmc2/PRUVXzpaNt+mUPgfd7wuE\nQsI9hYhoICdPAuPGAU1NPQt6MOfPA8uXAxs3AjU1wPz5wZxRJpHdyS/19hCPx1UfwVecz2w2zZd4\newYGny1bbtNc0ESk3EDt2YvtbZqJg4iUe/pp4D//AV59Nf3XaGwEqquBiROB2lpg5Ehpx/MFEwcR\naS/d23MyG2/TXNAebGp8/eF8ZrNhvuT27EpnNtvaNBc0ESkj6/aczJbbNBs0ESkjoz170bVNs0ET\nkbb8uj0nM/k2zQXtwYbGNxjOZzaT5xuoPbtkzmZqm+aCJqLABXV7TmbabZoNmogCF0R79qK6TbNB\nE5F2VN2ek5lwm+aC9mBy4xPB+cxm4nxe7dkVxGy6t2kuaCIKjC6352S63qbZoIkoMDq0Zy9BtWk2\naCLShq6352Q63aa5oD2Y2PhSwfnMZtJ8ou3ZpXI2Xdo0FzQR+c6U23My1bdpNmgi8p0J7dmL7DbN\nBk1Eypl6e06m4jbNBe3BpMaXDs5nNhPmS7U9u3ScLeg2zQVNRL6x5facLKjbNBs0EfnGhvbsJd02\nzQZNRMrYentO5udtmgvag44dTCbOZzad50u3Pbt0ni2ZX22aC5qIpMuW23My2bdpNmgiki4b2rMX\nrzYtpUG3t7ejoqICxcXFiEQiaGxszOTMRGS5bL09J5Nxm/Zc0EuXLsUdd9yBgwcPYv/+/SguLk7n\nrMYyqYOlg/OZTcf5Mm3PLh1nS1WmbXrQBX3q1Ck0NDRg0aJFAICcnBzk5uZmdGAishdvz/1L9zY9\naINuaWnBww8/jEgkgg8//BA333wz1q1bh2HDhvW9ABs0Ef0f27M3t01/8on37hx0QTc1NWH69OnY\ns2cPpk2bhmXLluG6667DihUr+l4gFEJVVRXC4TAAIC8vD9FoFLFYDEDff6bwMR/zsd2PT54EwuE4\n1q8HKivVn0e3x/F4HHV1dQCAgoIwnn32Ge/LrTOIY8eOOeFwuPdxQ0ODM2fOnMue4/ESxquvr1d9\nBF9xPrPpNN8vf+k4ixfLez2dZvODyO7MGWx5jx49GoWFhTh06BDGjx+PnTt3oqSkZPCNT0RZx23P\nTU2qT2IXz89Bf/jhh1i8eDE6OjowduxYbNiw4bI/KGSDJiK259SJ7E5+oQoRZeTkSWDcuJ7bc6Yf\nrcsm/GZJEriR31acz2w6zCfrc8/JdJhNtUEbNBHRYNie/cXEQURpY3tOHxs0EfmG7TkzbNAS2N7B\nOJ/ZVM7nV3t22f7eiWCDJqKUsT0Hg4mDiFLG9pw5Nmgiko7tWQ42aAls72Ccz2wq5vO7Pbtsf+9E\nsEETkTC252AxcRCRMLZnedigiUgatme52KAlsL2DcT6zBTlfUO3ZZft7J4INmog8sT2rwcRBRJ7Y\nnuVjgyaijLE9+4MNWgLbOxjnM1sQ8wXdnl22v3ci2KCJaEBsz2oxcRDRgNie/cMGTURpY3v2Fxu0\nBLZ3MM5nNj/nU9WeXba/dyLYoInoCmzPemDiIKIrsD37jw2aiFLG9hwMNmgJbO9gnM9sfsynuj27\nbH/vRLBBE1Evtme9MHEQUS+25+CwQRORMLbnYLFBS2B7B+N8ZpM5ny7t2WX7eydCqEGHw2Fcd911\nuPrqqzFkyBDs3bvX73MRUYDYnvUklDiKiorwwQcfID8//8oXYOIgMh7bc/BEdqfwpzi4hMk0u3cD\nX/kKMG2a6pPojbdnfQkt6FAohFtuuQVXX301Hn74YSxZsuSyH6+urkY4HAYA5OXlIRqNIhaLAejr\nSKY+Xrt2rVXzZMt806fHUFkJ/Pe/azF3bhQbNsQwdKg+59Pp/fvTn4B582IoKlI/T+Jj9+91OY+M\neerq6gCgd196cgQcPXrUcRzH+eKLL5zJkyc7u3bt6v0xwZcwVn19veoj+MrW+WprHWfOHMd56616\n5557HOemmxynsVH1qeTL9P07ccJx8vMd51//knMemWz9tekS2Z0pf8zumWeewfDhw/Hzn/8cABs0\n6efiReCGG4C33urJG44DvPkmsHQpUFUFPPMMMHSo6lPqge1ZHSkfszt37hzOnDkDADh79izeeecd\nTJw4Uc4JiXzw2mvA5Ml97TkUAn78Y2D/fuDTT4HSUuAf/1B7Rh247fmpp1SfhAbiuaA///xzzJgx\nA9FoFGVlZbjzzjsxe/bsIM6mhcQOZiPb5rt4EVi1Cli+vOdx4nwjRwJ/+Qvw618DP/wh8MQTwIUL\nSo4pTSbvn26fe05m26/NdHj+IWFRURFaWlqCOAtRxpJvz8nc23R5OfDooz236bo6oKws0GMqx09u\nmIFf6k3WSG7PXrK5TbM9q8cv9aas4nV7TpatbZrt2Rxc0B5s72C2zJfcnl0i85ncptN5/3Rvzy5b\nfm1mgguarJDq7TlZttymeXs2Cxs0GS/V9uzF5jbN9qwPNmjKCpnenpPZepvm7dk8XNAebO9gps83\nUHt2ZTKfCW06lflMac8u039tysAFTUaTfXtOZsttmrdnM7FBk7Fkt2cvJrdptmf9sEGT1fy+PScz\n9TbN27O5uKA92N7BTJ3Pqz27/JhPpzYtMp9p7dll6q9NmbigyUhB356TmXKb5u3ZbGzQZJyg27MX\nnds027O+2KDJSqpvz8l0vU3z9mw+LmgPtncw0+YTbc+uIOdT0aYHm8/U9uwy7demH7igySi63Z6T\n6XKb5u3ZDmzQZAzd2rMXlW2a7Vl/bNBkFd1vz8lU3aZ5e7YHF7QH2zuYKfOl2p5dOsznZ5vubz7T\n27NLh/dONS5oMoJpt+dkQd2meXu2Cxs0ac+09uzFzzbN9mwONmiygum352R+3aZ5e7YPF7QH2zuY\n7vOl255dOs8no00nzmdLe3bp/N4FhQuatGbb7TmZrNs0b892YoMmbdnWnr1k0qbZns3DBk1Gs/32\nnCzd2zRvz/bigvZgewfTdb5M27NL1/kGk0qbjsfj1rVnl4nvnWxc0KSlbLs9JxO9TZ8+zduzzYQa\ndFdXF6ZOnYqCggK8/fbbl78AGzRJlm3t2ctgbZrt2VzSGvS6desQiUQQCoWkHIxoMNl+e0420G2a\n7dl+ngv6yJEj2Lp1KxYvXpyVN2XbO5hu88lqzy7d5stEcpuePRuYPj1uXXt22fTepSvH6wmPPfYY\nnn/+eZw+fXrA51RXVyMcDgMA8vLyEI1GEYvFAPT9Szb1cUtLi1bnsX2+J56Io6AAmDbNzvkyffze\ne3GMGgXs3x/Db34D5Oe3IB7X53x8PPDjeDyOuro6AOjdl14GbdBbtmzBtm3bUFtbi3g8jtWrV7NB\nk2/YnimbZNyg9+zZg82bN6OoqAiVlZV49913sWDBAqmHJHKxPRNdbtAFvXLlSrS1teHw4cPYtGkT\nZs6ciY0bNwZ1Ni24/4liK13mk92eXbrM5xeb57N5NlEpfQ6an+Igv/D2THQlfi8OUo7tmbIRvxcH\nGYG3Z6L+cUF7sL2DqZ7Pr/bsUj2f32yez+bZRHFBk1K8PRMNjA2alGF7pmzGBk1a4+2ZaHBc0B5s\n72Cq5vO7Pbv4/pnL5tlEcUGTErw9E3ljg6bAsT0TsUGTpnh7JhLDBe3B9g4W9HxBtWcX3z9z2Tyb\nKC5oChRvz0Ti2KApMGzPRH3YoEkrvD0TpYYL2oPtHSyo+YJuzy6+f+ayeTZRXNAUCN6eiVLHBk2+\nY3smuhIbNGmBt2ei9HBBe7C9g/k9n6r27OL7Zy6bZxPFBU2+4u2ZKH1s0OQbtmeigbFBk1K8PRNl\nhgvag+0dzK/5VLdnF98/c9k8myguaPIFb89EmWODJunYnom8sUGTErw9E8nBBe3B9g4mez5d2rOL\n75+5bJ5NFBc0ScXbM5E8bNAkDdszkTgpDfrChQsoKytDNBpFJBLBk08+Ke2AZBfenonk8lzQQ4cO\nRX19PVpaWrB//37U19dj9+7dQZxNC7Z3MFnz6daeXXz/zGXzbKKEGvSwYcMAAB0dHejq6kJ+fr6v\nh9JJZ6fqE5iBt2ci+XJEntTd3Y0pU6bg008/xSOPPIJIJHLZj1dXVyMcDgMA8vLyEI1GEYvFAPT9\nLmji41deAZYtAx55JI4XXoghFNLrfDIeu/8sk9fr7ARWrYrhrbfUz+PHfDo/tnm+WCym1XkyfRyP\nx1FXVwcAvfvSS0p/SHjq1CnceuuteO6553oPYOsfEra0AN//PvDHPwLPPgvk5vb8/Te+ofpk+nn5\nZWDrVmDLFtUnITKH9C9Uyc3NxZw5c9DU1JTRwXR3+jQwfz5QUwPk5saxZw8waxYwdSrwyiuATb8f\nub/Dp0vX9uzKdD7d2TyfzbOJ8lzQx48fR3t7OwDg/Pnz2LFjB0pLS30/mCqOA/zkJ0B5OVBZ2fPP\ncnKAX/wCiMd7btGzZwP//rfSY2qD7ZnIP56J46OPPkJVVRW6u7vR3d2NBx98EI8//njfC1iWONav\n7/lP9sZG4JprrvzxS5eAF14AVq/uSR9LlgChUPDn1AE/90yUPpHdyS9USeB25927gRtvHPy5Bw4A\nCxdmd5tmeyZKH79ZUgoSu3Pich6og5WUwIo2nW7n0709u2zvmDbPZ/Nsorig0X93FpHNbZrtmch/\nTBzw7s4isqlNsz0TZY4NWkAq3VlENrRptmeizLFBexioOydKtYOZ1qZTnc+U9uyyvWPaPJ/Ns4nK\n2gWdbncWYXObZnsmCk7WJg4Z3VmETW2a7ZlIHjboAcjuziJsaNNsz0TysEH3Q6Q7J5LVwXRt06Lz\nmdaeXbZ3TJvns3k2UVm1oP3sziJMbtNsz0TBy6rEEVR3FmFSm2Z7JpKPDTqBiu4swoQ2zfZMJB8b\n9P+l2p0T+d3BVLdpr/lMbc8u2zumzfPZPJso6xe06u4sQuc2zfZMpI71iUOn7ixCpzbN9kzkn6xv\n0Lp2ZxE6tGm2ZyL/ZHWDzqQ7J1LVwYJq0wPNZ3p7dtneMW2ez+bZRFm5oE3oziJUtmm2ZyL1rEwc\npnVnEUG2abZnIv9lZYM2uTuLCKJNsz0T+S/rGrSs7pxItw4mu00nz2dLe3bp9v7JZvN8Ns8mypoF\nbUt3FuFnm2Z7JtKHNYnDxu4sQmabZnsmCk7WNGjbu7MIGW2a7ZkoOFnRoP3ozolM6WDptml3Ptva\ns8uU9y9dNs9n82yijF7Q2dSdRWTSptmeifRjdOLI1u4sIpU2zfZMFDyrGzS7sxiRNs32TBQ8KQ26\nra0N5eXlKCkpwYQJE1BTUyPtgOnyuzsnMr2DebXpHTviVrZnl+nvnxeb57N5NlGeC3rIkCFYs2YN\nDhw4gMbGRtTW1uLgwYNBnK1f7M6pG6xN//3vbM9Euko5cdx111342c9+hlmzZvW8QMCJg905M4lt\nesUKYOVKtmciFaQ36NbWVnzve9/DgQMHMHz4cOGfRBZ2Z3ncNj16NLB5s+rTEGUfkd2ZI/piX375\nJSoqKrBu3bre5eyqrq5GOBwGAOTl5SEajSIWiwHo60iZPp4yJYb584Gf/jSOY8eAG2+U+/oDPV67\ndq0v8+jwuLERWLNmLeJxO+cD7H7/bJ/P/XtdziNjnrq6OgDo3ZdehG7QnZ2duPPOO3H77bdj2bJl\nl79AADdox+npzbm5PYkjSPF4vPdfto04n9lsns/m2QBJicNxHFRVVeFrX/sa1qxZk9ZPkil2ZyKy\njZQFvXv3bnz3u9/FpEmTEPr/VzqsWrUKt912m/BPkgl2ZyKykZTPQX/nO99Bd3c3Wlpa0NzcjObm\n5t7l7LcgP+88kMQOZiPOZzab57N5NlHafi8Oft6ZiLKdtl/qze5MRDYz9ntxsDsTke2M/H7QOnTn\nRLZ3MM5nNpvns3k2UVotaHZnIqI+WiUOdmciyhZGNejm5p7vssbuTETZwJgGrVt3TmR7B+N8ZrN5\nPptnE6V8QbvdeeZMdmciokTKE8cf/gD8/vfszkSUXbRv0OzORJSttG7QOnfnRLZ3MM5nNpvns3k2\nUUoWNLszEZE3JYmD3ZmIsp2WDZrdmYhIwwZtSndOZHsH43xms3k+m2cTFdiCZncmIkpNYImD3ZmI\nqI82DZrdmYjoclo0aBO7cyLbOxjnM5vN89k8myhfFzS7MxFR+nxNHOzORET9U9qg2Z2JiAamrEGb\n3p0T2d7BOJ/ZbJ7P5tlESV/Q7M5ERHJITxzszkRE3gJv0OzORERiAm3QNnXnRLZ3MM5nNpvns3k2\nUZ4LetGiRRg1ahQmTpw44HNs7s4tLS2qj+Arzmc2m+ezeTZRngt64cKF2L59+6DPWb8eOHgQWLtW\n2rm00d7ervoIvuJ8ZrN5PptnE5Xj9YQZM2agtbV10Oc8/XRPd+YfChIRySOlQdvWnRN5/eZkOs5n\nNpvns3k2UUKf4mhtbcXcuXPx0UcfXfkCoZAvByMisp3X+vVMHJn+BERElB4l/1dvIiLy5rmgKysr\n8e1vfxuHDh1CYWEhNmzYEMS5iIiynueCfv3113H06FFcvHgRbW1tWLhwYe+Pbd++HTfddBPGjRuH\n3/72t74eNGgin/82WVtbG8rLy1FSUoIJEyagpqZG9ZGkunDhAsrKyhCNRhGJRPDkk0+qPpJ0XV1d\nKC0txdy5c1UfRbpwOIxJkyahtLQU3/zmN1UfR7r29nZUVFSguLgYkUgEjY2N/T/RSdOlS5ecsWPH\nOocPH3Y6OjqcyZMnOx9//HG6L6edXbt2Ofv27XMmTJig+ii+OHbsmNPc3Ow4juOcOXPGGT9+vFXv\nn+M4ztmzZx3HcZzOzk6nrKzMaWhoUHwiuVavXu3cd999zty5c1UfRbpwOOycOHFC9TF8s2DBAue1\n115zHKfn12d7e3u/z0u7Qe/duxc33HADwuEwhgwZgnvvvRd/+9vf0n057cyYMQPXX3+96mP4ZvTo\n0YhGowCA4cOHo7i4GEePHlV8KrmGDRsGAOjo6EBXVxfy8/MVn0ieI0eOYOvWrVi8eLG1f1Bv61yn\nTp1CQ0MDFi1aBADIyclBbm5uv89Ne0F/9tlnKCws7H1cUFCAzz77LN2XI4VaW1vR3NyMsrIy1UeR\nqru7G9FoFKNGjUJ5eTkikYjqI0nz2GOP4fnnn8dVV9n55/yhUAi33HILpk6dildffVX1caQ6fPgw\nRowYgYULF2LKlClYsmQJzp071+9z0353+flnO3z55ZeoqKjAunXrMHz4cNXHkeqqq65CS0sLjhw5\ngl27dlnzzXe2bNmCkSNHorS01Npb5vvvv4/m5mZs27YNtbW1aGhoUH0kaS5duoR9+/bh0Ucfxb59\n+3Dttdfiueee6/e5aS/oMWPGoK2trfdxW1sbCgoK0n05UqCzsxP33HMPHnjgAdx1112qj+Ob3Nxc\nzJkzB01NTaqPIsWePXuwefNmFBUVobKyEu+++y4WLFig+lhSff3rXwcAjBgxAnfffTf27t2r+ETy\nFBQUoKCgANOmTQMAVFRUYN++ff0+N+0FPXXqVPzzn/9Ea2srOjo68MYbb+AHP/hBui9HAXMcBw89\n9BAikQiWLVum+jjSHT9+vPeb7Zw/fx47duxAaWmp4lPJsXLlSrS1teHw4cPYtGkTZs6ciY0bN6o+\nljTnzp3DmTNnAABnz57FO++8Y9WnqUaPHo3CwkIcOnQIALBz506UlJT0+9y0v5IwJycHL730Em69\n9VZ0dXXhoYceQnFxcbovp53Kykq89957OHHiBAoLC7FixYrLPmJouvfffx9//vOfez/KBACrVq3C\nbbfdpvhkchw7dgxVVVXo7u5Gd3c3HnzwQcyaNUv1sXxhW278/PPPcffddwPoyQH3338/Zs+erfhU\ncr344ou4//770dHRgbFjxw749SUZ/x9ViIjIH3b+ETARkQW4oImINMUFTUSkKS5oIiJNcUETEWmK\nC5qISFP/A2qNvQDDf0opAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x89eb9e8>" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Try to change the y limits => it works" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ax.set_ylim(0,20)\n", | |
"fig" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD9CAYAAACcJ53WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFchJREFUeJzt3X1sVfUdx/HPRcgWh7Nl0uJGXQ3CRnmw1Tq2RbYij2aB\nQSAbjGEpTybMLWxOxC1ug7mBY/6B6DZ1rJSQTXAPiHMSNeQKYxqCbTcMRDGhrrK2ghTTgpPS3v1x\n1ycs7eH0nJ7z+/b9Sgje9lJ+H2795tdPf+c0kUqlUgIAOGNA1AsAAFweBjcAOIbBDQCOYXADgGMY\n3ADgGAY3ADim28FdXV2tSZMmacyYMRo7dqwefvhhSdLp06c1depUjRo1StOmTdOZM2f6ZLEAACnR\n3Tnu2tpa1dbWKj8/X42Njbr55pu1a9culZaW6pprrtHq1av14IMPqr6+Xhs2bOjLdQNAv9XtjnvY\nsGHKz8+XJA0ePFijR4/WiRMntHv3bhUXF0uSiouLtWvXrvBXCgCQ1MOOu6Oqqip9+ctf1muvvabr\nrrtO9fX1kqRUKqUhQ4a0PQYAhGuglyc1NjZq7ty52rRpk6666qpO70skEkokEh/6M129DQDQs572\n0z2eKmlqatLcuXO1aNEizZ49W5KUnZ2t2tpaSVJNTY2ysrIu+Zdb/fXjH/848jWQj3z9MZ/lbKmU\nt1tHdTu4U6mUli5dqry8PK1atart7bNmzVJZWZkkqaysrG2g9ydVVVVRLyFU5HOb5XyWs3nVbVVy\n4MABbd++XePHj1dBQYEkaf369VqzZo2+9rWvacuWLcrNzdXOnTv7ZLEAgB4G96233qqWlpYu3/fi\niy+GsiBXLF68OOolhIp8brOcz3I2rzyfKrnsD5xIeO5rAABpXmYnl7z7lEwmo15CqMjnNsv5LGfz\nisENAI6hKgGAGKEqAQCDGNw+We/ZyOc2y/ksZ/OKwQ0AjqHjBoAYoeMGAIMY3D5Z79nI5zbL+Sxn\n84rBDQCOoeMGgBih4wYAgxjcPlnv2cjnNsv5LGfzisENAI6h4waAGKHjBgCDGNw+We/ZyOc2y/ks\nZ/OKwQ0AjqHjBoAYoeMGAIMY3D5Z79nI5zbL+Sxn84rBDQCOoeMGgBih4wYAgxjcPlnv2cjnNsv5\nLGfzisENAI6h4waAGKHjBgCDGNw+We/ZyOc2y/ksZ/OKwQ0AjqHjBoAYoeMGAIMY3D5Z79nI5zbL\n+Sxn84rBDQCOoeMGgBih4wYAgxjcPlnv2cjnNsv5LGfzisENAI6h4waAGKHjBgCDGNw+We/ZyOc2\ny/ksZ/OKwQ0AjqHjBoAYoeMGAIMY3D5Z79nI5zbL+Sxn84rBDQCO6bHjXrJkiZ599lllZWXp8OHD\nkqSf/OQn+u1vf6uhQ4dKktavX68ZM2Z0/sB03ABw2QLpuEtKSrRnz54PfeDvfe97qqioUEVFxYeG\nNgAgPD0O7okTJyozM/NDb+/vu2nrPRv53GY5n+VsXg30+wc3b96sbdu2qbCwUA899JAyMjI+9JzF\nixcrNzdXkpSRkaH8/HwVFRVJav/Hd/VxZWVlrNZDPvL1p3yWHieTSW3dulWS2uZlTzyd466qqtLM\nmTPbOu533nmnrd++//77VVNToy1btnT+wHTcAHDZQjvHnZWVpUQioUQioWXLlungwYO+FggAuHy+\nBndNTU3bf//lL3/RuHHjAluQK1q/1LGKfG6znM9yNq967LgXLFigl156SadOnVJOTo7Wrl2rZDKp\nyspKJRIJXX/99Xrsscf6Yq0AAHGvEgCIFe5VAgAGMbh9st6zkc9tlvNZzuYVgxsAHEPHDQAxQscN\nAAYxuH2y3rORz22W81nO5hWDGwAcQ8cNADFCxw0ABjG4fbLes5HPbZbzWc7mFYMbABxDxw0AMULH\nDQAGMbh9st6zkc9tlvNZzuYVgxsAHEPHDQAxQscNAAYxuH2y3rORz22W81nO5hWDGwAcQ8cNADFC\nxw0ABjG4fbLes5HPbZbzWc7mFYMbABxDxw0AMULHDQAGMbh9st6zkc9tlvNZzuYVgxsAHEPHDQAx\nQscNAAYxuH2y3rORz22W81nO5hWDGwAcQ8cNADFCxw0ABjG4fbLes5HPbZbzWc7mFYMbABxDxw0A\nMULHDQAGMbh9st6zkc9tlvNZzuYVgxsAHEPHDQAxQscNAAYxuH2y3rORz22W81nO5hWDGwAcQ8cN\nADFCxw0ABjG4fbLes5HPbZbzWc7mFYMbABzTY8e9ZMkSPfvss8rKytLhw4clSadPn9bXv/51vfXW\nW8rNzdXOnTuVkZHR+QPTcQPAZQuk4y4pKdGePXs6vW3Dhg2aOnWq3njjDU2ePFkbNmzo3UoBAJ71\nOLgnTpyozMzMTm/bvXu3iouLJUnFxcXatWtXOKuLMes9G/ncZjmf5WxeDfTzh+rq6pSdnS1Jys7O\nVl1dXZfPW7x4sXJzcyVJGRkZys/PV1FRkaT2f3xXH1dWVsZqPeQjX3/KZ+lxMpnU1q1bJaltXvbE\n0znuqqoqzZw5s63jzszMVH19fdv7hwwZotOnT3f+wHTcAHDZQjvHnZ2drdraWklSTU2NsrKy/HwY\nAIAPvgb3rFmzVFZWJkkqKyvT7NmzA12UC1q/1LGKfG6znM9yNq96HNwLFizQF7/4Rb3++uvKyclR\naWmp1qxZoxdeeEGjRo3S3r17tWbNmr5YKwBA3KsEAGKFe5UAgEEMbp+s92zkc5vlfJazecXgBgDH\n0HEDQIzQcQOAQQxun6z3bORzm+V8lrN5xeAGAMfQcQNAjNBxA4BBDG6frPds5HOb5XyWs3nF4AYA\nx9BxA0CM0HEDgEEMbp+s92zkc5vlfJazecXgBgDH0HEDQIzQcQOAQQxun6z3bORzm+V8lrN5xeAG\nAMfQcQNAjNBxA4BBDG6frPds5HOb5XyWs3nF4AYAx9BxA0CM0HEDgEEMbp+s92zkc5vlfJazecXg\nBgDH0HEDcEIqJT31lPTII9KIEdLNN6d/3XijdOWVUa8uOF5mJ4MbQOwdPSrddZd08qS0dm3691df\nTf86ckS64Yb2Qe76MOebkyGy3rORz21W8jU0SKtXSxMnSl/9qlReLmVmJrVihfTYY9KhQ1J9vVRa\nKn3hC9Lhw+kBf8010vjxUklJeof+8svSuXNRpwnOwKgXAAAXS6WknTul739fmjRJeu01adiwrp/7\nkY+077RbffBB+s+07spLS9O7dis7c6oSALHSsRZ59NH0bjsIFw/zQ4fiOczpuAE4o6FB+ulPpd/9\nTvrRj6SVK6WBIXcCHYf5oUPp36Me5nTcIbLSIV4K+dzmUr5UStqxQ8rLk2pr04P0O9+59NAOMltr\nzbJihfT44+nB3bEz/9e/4tmZ03EDiEzHWuT3vw+uFumNjp35ihXpt128M4+6M6cqAdDnGhuldevS\nA/D++/umFglaWDULHTeAWGm9iObuu9OnRX7xi0ufFnFR6zBvHeR+hjmDO0TJZFJFRUVRLyM05HNb\nHPMFdVokjtm6c7nD3MvsdOyLEwCusVCL9EZ358xbh3nHztwLdtwAQmG9Fgla6zAvLKQqARCBsC6i\n6Q84xx0il87J+kE+t0WVr7ExfW+RL32p/d4iQQ9t66+dFwxuAL3Wem+R0aPTF9EcPtz9RTToHaoS\nAL1CLRIsqhIAoWlslO69N9xaBF1jcPtkvWcjn9vCzNexFqmp6ftaxPpr5wUNFADP4nhvkf6oVx13\nbm6uPv7xj+uKK67QoEGDdPDgwfYPTMcNmNHY2H7L1f54EU1fCv3KyUQioWQyqSFDhvTmwwCIqYsv\nojl8mIto4qDXHXd/3VVb79ms5mtpSd/7efXqpP75T6mpKeoVhSOI1+/oUWnKFOmBB9K1yLZt8Rja\nVj83L0evd9xTpkzRFVdcoTvvvFPLly/v9P7FixcrNzdXkpSRkaH8/Py2m8O0/uO7+riysjJW6yFf\nz4+PHZNKS4t04YLU0lKpHTukU6eKNHasNGxYUp/5jLRwYZHy8qQDB6Jfb28e9+b1a2yUli9P6rnn\npHXrirRypfT3vyeVTMYnn6XHyWRSW7dulaS2edmTXnXcNTU1uvbaa3Xy5ElNnTpVmzdv1sT/f7eC\njhtxUV+f7mX/+Mf07nHJEmnA/7/WbGiQKis731P53/+Wxo5N3xSosDD9e16eNGhQtDnCxr1F4qFP\nb+u6du1aDR48WHfffbfnvxwIU0uLVFYm/eAH0uzZ0s9+Jnn5dkx/HOZcRBMfoV6Ac+7cOTU0NEiS\nzp49q+eff17jxo3z++Gc0/qljlWu56uokG69VfrNb6RnnpF+/evOQ7u7fFddlR5cq1ZJ27enh1pt\nrfTLX0qjRkl790rz50sZGdKECdK3vpU+bRGnztzr6+fiRTSuf24GwXfHXVdXpzlz5kiSLly4oIUL\nF2ratGmBLQzwo7tapDdah3nHodZxZ753r7RxY/vOvHVXHtedOadF3Ma9SmCC31okaN3VLHEZ5keP\nSt/+tvTOO9QiccSPLkO/UFGRriuam9ODqLAw6hV1dqlhPm5c5x9dFfYw5yIaN3CTqRBZ79lcyFdf\nn/6G2u23pyuRl1/2PrT7Mt+lOvONG6WRIzt35p//fDCdecd8Ud9bJGgufG6GzdGXDv3ZxbXIkSPR\n1CK9cTmdeW925h1rEe4tYgdVCZwS91okaH5rFmoRd9Fxw4zW0yJPPZX+xmNQp0Vc1NMw//Snpc2b\nuYjGVXTcIbLes8UlX0uLVFqa3lE2N6drkWXLej+045LPj5468zfflO65Jxmbe4sEzeXXLih88YTY\n6liLPPOM/VqkNy7uzJlttlGVIHaoRdCfUZXAKWHVIoA1/C/hk/Wera/zdXVvkU98Iry/j9fPXZaz\necXgRqRaL6KZMePyL6IB+is6bkTi4otoHngg3B024IrQf+Yk4EfraZELFzgtAvhBVeKT9Z4tjHwX\n1yKvvBLd0Ob1c5flbF4xuBE6TosAwaLj9qGpSTpxQrruOoZPTzrWIr/6FbUI0BM67oAdPy498UR6\n99jSIn3wgXTTTZ1v9jNiBMNc4iIaIEz8r9SDpibpT3+Spk+XbrlFev/99C03d+xI6tgxafXq9H2U\nd+6UpkxJ3170ttuke+6RnnxSOnYsPeRd47dHdKUWsd6TWs5nOZtX7LgvoePueuRI6c47paeflj76\n0fT76+qkoUPT32ibMaP9z508mb5b26uvpof5vfdK773XP3bmnBYB+gYddwdNTdLu3dLjj6cH76JF\n0ooV6Z8c0hsdh3nrL0vDnFoECA734/aoq9313Lntu+swWBjmrRfR3Hdf+w/o5SIaoHcY3N3o7e46\nmUyqqKgo0DXFaZj3lM/10yJhvH5xYjmf5WwSp0q61FN3HSW/nXlhYXqYJxLhr5FaBIhev9hxh9Vd\nR8XLzjzoYU4tAvSNfl+VRNFdR+XkSam8vP1nEAY5zF2vRQCX9MsfpHCpc9f79kkLFwY3tON2lnTo\n0HTmH/5Q+vOfpbfeSp8hv/fe9nPmkydLmZnt58x37Ej/fMKuPkeSyWSs7i0StLi9fkGznM9yNq/M\ndNxx7q6j0jrMp09vf1vHnfmOHekLiDruzAsL07/v2SPNn5+uRY4coRYB4sTpqsRadx2V1mH+6qvt\nVcsnPylt3mxnhw24wmzH3Z+6awD9i6mOu6+6a6+s92zkc5vlfJazeRX7jpvuGgA6i2VVQncNoL9y\n7spJdtcA0LPIO+64dddeWe/ZyOc2y/ksZ/Mqsh03u2sA8KdPO266awDoXmw6bnbXABCcUDtuF7tr\nr6z3bORzm+V8lrN5FeqOe9MmdtcAELRYnuMGgP7K1CXvAIA0BrdP1ns28rnNcj7L2bxicAOAY+i4\nASBG6LgBwCAGt0/Wezbyuc1yPsvZvPI9uPfs2aPPfvazGjlypB588MEg1+SEysrKqJcQKvK5zXI+\ny9m88jW4m5ubddddd2nPnj06cuSI/vCHP+jo0aNBry3Wzpw5E/USQkU+t1nOZzmbV74G98GDB3XD\nDTcoNzdXgwYN0vz58/X0008HvTYAQBd8De4TJ04oJyen7fHw4cN14sSJwBblgqqqqqiXECryuc1y\nPsvZvPJ1r5JEIhHo81xVVlYW9RJCRT63Wc5nOZsXvgb3pz71KVVXV7c9rq6u1vDhwzs9hzPcABAO\nX1VJYWGhjh07pqqqKp0/f147duzQrFmzgl4bAKALvnbcAwcO1COPPKLp06erublZS5cu1Wh+jA0A\n9Anf57hvv/12vf7663rzzTd13333dXqf5TPeS5YsUXZ2tsaNGxf1UkJRXV2tSZMmacyYMRo7dqwe\nfvjhqJcUmP/+97+aMGGC8vPzlZeX96HPWyuam5tVUFCgmTNnRr2UwOXm5mr8+PEqKCjQ5z73uaiX\nE7gzZ85o3rx5Gj16tPLy8vTKK690/cRUwC5cuJAaMWJE6vjx46nz58+nbrzxxtSRI0eC/msis2/f\nvlR5eXlq7NixUS8lFDU1NamKiopUKpVKNTQ0pEaNGmXq9Tt79mwqlUqlmpqaUhMmTEjt378/4hUF\n76GHHkp94xvfSM2cOTPqpQQuNzc39e6770a9jNDccccdqS1btqRSqfTn6JkzZ7p8XuCXvFs/4z1x\n4kRlZmZGvYzQDBs2TPn5+ZKkwYMHa/To0frPf/4T8aqCc+WVV0qSzp8/r+bmZg0ZMiTiFQXr7bff\n1t/+9jctW7bM7AEBq7nee+897d+/X0uWLJGUrqSvvvrqLp8b+ODmjLcdVVVVqqio0IQJE6JeSmBa\nWlqUn5+v7OxsTZo0SXl5eVEvKVDf/e53tXHjRg0YYPM2RIlEQlOmTFFhYaGeeOKJqJcTqOPHj2vo\n0KEqKSnRTTfdpOXLl+vcuXNdPjfwV9f62e3+orGxUfPmzdOmTZs0ePDgqJcTmAEDBqiyslJvv/22\n9u3bZ+qGRX/961+VlZWlgoICs7vSAwcOqKKiQs8995weffRR7d+/P+olBebChQsqLy/XypUrVV5e\nro997GPasGFDl88NfHB7OeONeGtqatLcuXP1zW9+U7Nnz456OaG4+uqr9ZWvfEWHDh2KeimB+cc/\n/qHdu3fr+uuv14IFC7R3717dcccdUS8rUNdee60kaejQoZozZ44OHjwY8YqCM3z4cA0fPly33HKL\nJGnevHkqLy/v8rmBD27OeLstlUpp6dKlysvL06pVq6JeTqBOnTrVdoOi999/Xy+88IIKCgoiXlVw\nfv7zn6u6ulrHjx/Xk08+qdtuu03btm2LelmBOXfunBoaGiRJZ8+e1fPPP2/qdNewYcOUk5OjN954\nQ5L04osvasyYMV0+19c57u5YP+O9YMECvfTSS3r33XeVk5OjdevWqaSkJOplBebAgQPavn1725Er\nSVq/fr1mzJgR8cp6r6amRsXFxWppaVFLS4sWLVqkyZMnR72s0FirLevq6jRnzhxJ6Vph4cKFmjZt\nWsSrCtbmzZu1cOFCnT9/XiNGjFBpaWmXzwvtR5cBAMJh81vPAGAYgxsAHMPgBgDHMLgBwDEMbgBw\nDIMbABzzP+UEPMk2TCAxAAAAAElFTkSuQmCC\n", | |
"prompt_number": 5, | |
"text": [ | |
"<matplotlib.figure.Figure at 0x89eb9e8>" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig, ax = plt.subplots()\n", | |
"df.boxplot('A', 'B', ax=ax)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"<matplotlib.axes.AxesSubplot at 0x8bebc18>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEYCAYAAACqfMY2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF2NJREFUeJzt3V1wVPUdxvFnSeo0EArEgnEUGiwWE5Jw1mAQS0oQCEPH\ntChURZEEKh0d0VJb62AvykvHMiPV0XrT4UKhllboBVNFKGXIUkIRHEiAjlAcYCkoUcJbw1sx7L8X\nKQuBJPuS5Jzz3/1+ZlJz2N2zv3T/8+TkydmTgDHGCABgpR5eDwAASB4hDgAWI8QBwGKEOABYjBAH\nAIsR4gBgMUIcMWVkZCgYDMpxHJWUlGjr1q1duv9QKKTKysoO77Np06Yuf1435OXl6eTJkzf8e3Z2\ndtL7rK6u1h133KFgMKj8/HwtXLiwMyPCcoQ4YurZs6fq6upUX1+vX//615o3b57rM9TU1Ogf//hH\n0o83xsiLt0QEAoGE/j3efS5ZsiT6mixbtkyHDx9Oen+wGyGOhJw5c0Y5OTmSWoLxhRdeUFFRkYqL\ni7Vy5UpJ0ty5c7Vo0SJJ0l//+leNGTNGxhhVV1frqaee0j333KOhQ4dqzZo1N+z/5MmTmjx5soYP\nH65Ro0Zpz549CofD+t3vfqfXXntNwWBQtbW1rR5z/PhxTZgwQYWFhZo9e3b06DccDmvo0KGqqqpS\nUVGRjhw50ua81/8kMGfOHC1btkxSy5H0iy++qOLiYo0cOVIHDhyIPufUqVNVWlqq0tLS6DeYEydO\nqKKiIjpLR984nn/+eRUWFmr8+PFqbGzUgQMHVFJSEr39k08+abV9rSv7PX/+vCSpV69e7T4PUpwB\nYsjIyDCO45i77rrL9OnTx+zcudMYY8yf//xnM2HCBBOJRMznn39uBg0aZBoaGsz58+fNsGHDzMaN\nG83QoUPNwYMHjTHGVFVVmUmTJhljjPnkk0/M7bffbi5evGhqamrMAw88YIwxZs6cOWbhwoXGGGM2\nbtxoHMcxxhgzf/5885vf/KbN+Z555hmzePFiY4wx69atM4FAwJw4ccIcOnTI9OjRw2zbtq3deY8d\nO9bq+a/MsGzZMmOMMXl5eebll182xhizfPny6P2mTZtmamtrjTHGHD582OTn5xtjjHn22WfNokWL\njDHGrFmzJjrL9QKBgFmxYoUxxpiFCxeaOXPmGGOMGTt2rKmvrzfGGDNv3jzz5ptv3vDYqqoqM3jw\nYOM4jsnOzja/+MUv2nnlkA44EkdMWVlZqqur0969e7Vu3To98cQTkqTa2lo99thjCgQCGjBggMaM\nGaPt27crKytLS5cu1YQJE/Tss89q8ODBklpqgIcffliSNGTIEN1xxx3at29fq+fasmVLdP9jx47V\niRMn1NTUJEntHtVu2bJFjz76qCRp4sSJ6tevX/S2b3zjGyotLY3e7/p5P/roo5jVxrRp0yRJjz76\naLSX37Bhg+bMmaNgMKjvf//7ampq0rlz57R582ZNnz5dkvTd73631SzX6tGjhx555BFJ0vTp06M/\nXTz55JN66623FIlEtHLlSj322GM3PPbaOqWhoUEbNmyw8vcF6BqZXg8Au9x7771qbGzU8ePHFQgE\nWgWrMSYaiLt371b//v316aefdri/Hj1uPI5oL6w70t5jrq8Zrr9fIBBQZmamIpFI9N8uXLjQ7vNc\n+fqMMdq2bZtuuummuGdpz7X/vz300ENasGCB7r//fo0YMaLdbwJX9OrVS+Xl5aqtrdWoUaMSel6k\nBo7EkZB9+/YpEono61//usrKyvTuu+8qEono+PHj2rx5s0pLS3X48GG9+uqrqqur09q1a7V9+3ZJ\nLWG1atUqGWN04MABHTx4UEOHDm21/7KyMv3hD3+Q1NJV9+/fX71791bv3r2jR+TX+/a3vx3tt9ev\nX69Tp061eb/r5/373/+u0tJSDRo0SB9//LEuXbqk06dPa+PGja0e9+6770b/e99990mSKioq9MYb\nb0Tvs2vXLknSd77zHa1YsUKStHbt2nZniUQiWrVqlSRpxYoVKisrkyR99atf1cSJE/X0009r5syZ\nbT5WuvqNorm5Wdu2bdOQIUPavS9SnDctDmxypRN3HMcMHz7cfPDBB9HbXnjhBVNYWGiKiorMypUr\njTHGjB8/3rz33nvGGGN27NhhioqKzMWLF011dbV56qmnzIgRI8y3vvUts2bNGmOMMaFQyFRWVhpj\njDl58qSZPHmyKS4uNqNGjTJ79uwxxhizf/9+U1xcbBzHiXbRV3zxxRdm3LhxprCw0MyePdvceuut\n5tKlS+bQoUOmqKio1X3bmtcYY37+85+bO++801RUVJgpU6a06sRffPFFU1xcbEpLS82BAweMMcY0\nNjaaRx55xBQXF5uCggLz9NNPG2OMOXHihKmoqDDDhg0zs2fPNnl5eW124tnZ2eb55583hYWFZty4\ncaaxsTF629atW83tt99uIpFIm69HdXV1tBMvKCgwzz33XIevH1JbwBguRQt3zJw5U5WVlXrooYe6\ndL+XLl1SRkaGMjIytHXrVj3zzDPauXNnl+x78ODB2rFjR/SMHDcsWbJETU1NWrBggWvPCXvRicN6\n//73v/Xwww8rEonopptu0tKlS9u9b3l5uXbv3q2GhoY2++zrdeZ87mQ8+OCDOnTo0A2VDtAejsSR\nNsLhsAoKCjRo0CD96le/0tSpU70eCeg0frGJtLF8+XKNHz9eTzzxRPTNPIDtOBJH2hgyZIgWLFig\n0tJSDRs2TEePHtWAAQO8HgvoFI7EkRZqa2v16aef6nvf+57uvPNOFRQURE8FBGxGiCMtLFu2TBUV\nFerdu7ck6Qc/+AGVClICdQpS3oULF5Sbm6tIJBK9BOx///tfnT59WvX19SouLvZ4QiB5HIkj5a1e\nvVqZmZnau3evdu3apV27dmnv3r0qKyvT8uXLvR4P6BSOxJHyJk2apMLCQr3yyiut/n3VqlX68Y9/\nrKNHj7Z5DRfABoQ4AFgs5uHHv/71LwWDwehHnz59Wl34BwDgnYSOxCORiG677TZt375dAwcO7M65\nAABxSKgI3LBhg775zW8S4ADgEwmF+J/+9Kc2/9IIAMAbcdcply5d0m233aaPP/5Y/fv3v7oDl6/y\nBgDpqL2ojvtStGvXrlVJSUmrAI+1c3TO/PnzNX/+fK/HAOIWCMyXMfO9HiPldHSwHHed8sc//jH6\nB2MBAP4QV4ifO3dOGzZs6PK/yIKOhcNhr0cAEhT2eoC0E1ed0qtXLzU2Nnb3LLiO4zhejwAkiDXr\ntk6/YzMQCNCJA5AkBQIScdD1OspZLhgBoMv88pdeT5B+CHEfC4VCXo8AJKS8POT1CGmHEAcAi9GJ\nA4DP0YkDQIoixH2MThy2Yc26jxAH0GXeftvrCdIPnTiALsN54t2DThwAUhQh7mP0i7BPyOsB0g4h\nDgAWoxMH0GXoxLsHnTiAhOXktIRyIh9S4o/JyfH267QdIe5jdOLw0qlTLUfViXzU1IQSfsypU15/\npXYjxAHAYnTiANrkVr9Njx4bnTgApChC3MfoxGEb1qz7CHEAsBidOIA20Yn7B504AKQoQtzH6Bdh\nG9as+whxALAYnTiANtGJ+wedOACkKELcx+gXYRvWrPtihvjp06c1depU5efnq6CgQB9++KEbcwEA\n4hCzE6+qqtKYMWM0a9YsNTc369y5c+rTp8/VHdCJAymJTtw/OsrZDkP8zJkzCgaDOnjwYFI7B2Av\nQtw/kv7F5qFDh9S/f3/NnDlTd999t2bPnq3z5893y5C4Ef0ibMOadV9mRzc2Nzdr586devPNN3XP\nPfdo7ty5Wrx4sRYuXNjqftXV1crLy5Mk9e3bV47jqLy8XNLVF5Vtttm2a9sooND//1pPy61X/wxy\ne9v1MW5va7tGkmS6/euxafvK5+FwWLF0WKc0NDRo1KhROnTokCSptrZWixcv1vvvv391B9QpQEqi\nTvGPpOuU3NxcDRw4UPv375ckbdiwQcOGDev6CQEASYl5iuFvf/tbPf744xo+fLh2796tl156yY25\nIPpF2Ic1674OO3FJGj58uD766CM3ZgEAJIhrpwBoE524f3DtFABIUYS4j9EvwjasWfcR4gBgMTpx\nAG2iE/cPOnEASFGEuI/RL8I2rFn3EeIAYDE6cQBtohP3DzpxAEhRhLiP0S/CNqxZ9xHiAGAxOnEA\nbaIT9w86cQBIUYS4j9EvwjasWfcR4gBgMTpxAG2iE/cPOnEASFGEuI/RL8I2rFn3EeIAYDE6cQBt\nohP3DzpxAEhRhLiP0S/CNqxZ9xHiAGAxOnEAbaIT9w86cQBIUYS4j9EvwjasWfdlxnOnvLw8fe1r\nX1NGRoa+8pWvaPv27d09FwAgDnF14oMHD9aOHTuUk5Nz4w7oxIGURCfuH13SiRPUAOA/cYV4IBDQ\n+PHjNWLECC1durS7Z8L/0S/CNqxZ98XViW/ZskW33nqrjh8/rgkTJuiuu+5SWVlZ9Pbq6mrl5eVJ\nkvr27SvHcVReXi7p6ovKdtvbgUBAybjyk5HX87Od2tuBQMu2VP7//8bark/w/iFlZ1/d9vrr9cv2\nlc/D4bBiSfg88QULFig7O1s//elPW3ZAJ95t6AphG9Zs9+hUJ37+/Hk1NTVJks6dO6f169erqKio\naycEACQlZp3y+eef68EHH5QkNTc36/HHH1dFRUW3Dwap5UfPco9nABIREmvWXTFDfPDgwaqvr491\nNwCAB7h2io/RL8I2rNnuwbVTLPXLX3o9AZAY1qz7CHEfKy8PeT0CkBDWrPsIcQCwGJ04APgcnTgA\npChC3MeufQsuYAPWrPsIcR97+22vJwASw5p1H524j3HOLWzDmu0edOIAkKIIcV8LeT0AkKCQ1wOk\nHUIcACxGJ+5j9IuwDWu2e9CJW4rrUMA2rFn3EeI+xnUoYBvWrPsIcQCwGJ04APgcnTgApChC3Me4\nDgVsw5p1HyHuY1yHArZhzbqPTtzHOOcWtmHNdg86cQBIUYS4r4W8HgBIUMjrAdIOIQ4AFqMT9zH6\nRdiGNds96MQtxXUoYBvWrPsIcR/jOhSwDWvWfXGF+OXLlxUMBlVZWdnd8wAAEhBXJ/7qq69qx44d\nampq0l/+8pfWO6ATB4Bu1alO/OjRo/rggw/05JNPEtYA4DMxQ/wnP/mJXnnlFfXoQX3uNq5DAduw\nZt2X2dGN77//vgYMGKBgMNjhi1NdXa28vDxJUt++feU4jsrLyyVdfVHZTny75ToU/pmHbbZDoZDG\njh2rZBhjfDG/DdtXPg+Hw4qlw078pZde0u9//3tlZmbq4sWL+s9//qMpU6Zo+fLlV3dAJ95tOOcW\ngNRxzsb9Zp9NmzZpyZIleu+99+LeOTqHEAcgdeGbfQKBQJcMhHiFvB4ASMi1dQDc0WEnfq0xY8Zo\nzJgx3TkLACBBXDvFx6hTAEhcO8VaXIcCQCyEuI9xHQrYhk7cfYQ4AFiMThwAfI5OHABSFCHuY/SL\nsA1r1n2EuI+1XDsFANpHJ+5jnCcOQKITB4CURYj7WsjrAYCE0Im7jxAHAIvRifsYnTgAiU7cF3Jy\nWkI5kQ8p8cfk5Hj7dQJwFyHuklOnWo6qE/moqQkl/JhTp7z+SpHO6MTdR4gDgMXoxF3iVr9Njw6k\nHjpxAEhRhLiP0S/CNqxZ9xHiAGAxOnGX0IkDSBadOACkKELcx+gXYRvWrPsIcQCwGJ24S+jEASSL\nThwAUhQh7mP0i7ANa9Z9MUP84sWLGjlypBzHUUFBgebNm+fGXACAOMTViZ8/f149e/ZUc3OzRo8e\nrSVLlmj06NEtO6ATjwudOIBkdboT79mzpyTp0qVLunz5snK4aDUA+EJcIR6JROQ4jm655RaNHTtW\nBQUF3T0XRL8I+7Bm3ZcZz5169Oih+vp6nTlzRhMnTlQoFFJ5eXn09urqauXl5UmS+vbtK8dxordf\neVHTfVty5/mkkEIh779ettNzu76+3lfz2Lp95fNwOKxYEj5PfNGiRcrKytLPfvazlh3QiceFThxA\nsjrViTc2Nur06dOSpAsXLuhvf/ubgsFg104IAEhKzBA/duyY7r//fjmOo5EjR6qyslLjxo1zY7a0\nd+2PVoANWLPui9mJFxUVaefOnW7MAgBIENdOcQmdOIBkce0UAEhRhLiP0S/CNqxZ9xHiAGAxOnGX\n0IkDSBadOACkKELcx+gXYRvWrPsIcQCwGJ24S+jEASSLThwAUhQh7mP0i7ANa9Z9hDgAWIxO3CV0\n4gCS1VHOxvWXfdB5RgEp4MbzXP1fAKmPOsUlAZmWQ+QEPkI1NQk/JkCAw0N04u4jxAHAYnTiLqET\nB5AszhMHgBRFiPsY/SJsw5p1HyEOABajE3cJnTiAZNGJA0CKIsR9jH4RtmHNuo8QBwCL0Ym7hE4c\nQLLoxAEgRRHiPka/CNuwZt0XM8SPHDmisWPHatiwYSosLNQbb7zhxlwAgDjE7MQbGhrU0NAgx3F0\n9uxZlZSUaPXq1crPz2/ZAZ14XOjEASSrU514bm6uHMeRJGVnZys/P1+fffZZ104IAEhKQp14OBxW\nXV2dRo4c2V3z4Br0i7ANa9Z9cf9ln7Nnz2rq1Kl6/fXXlZ2d3eq26upq5eXlSZL69u0rx3FUXl4u\n6eqLmu7bkjvPJ4UUCnn/9bKdntv19fW+msfW7Sufh8NhxRLXeeJffvmlHnjgAU2aNElz585tvQM6\n8bjQiQNIVkc5GzPEjTGqqqrSzTffrNdeey2hneMqQhxAsjr1i80tW7bonXfeUU1NjYLBoILBoNat\nW9flQ+JG1/5oBdiANeu+mJ346NGjFYlE3JgFAJAgrp3iEuoUAMni2ikAkKIIcR+jX4RtWLPuI8QB\nwGJ04i4JBNx5nn79pJMn3XkuAO7oKGfjfscmOieZ73P8khJALNQpvhbyegAgIXTi7iPEAcBidOI+\nRp0CQOI8cQBIWYS4j1VVhbweAUgInbj7CHEfq672egIAfkcnDgA+RycOACmKEPcx+kXYhjXrPkIc\nACxGiPtYKFTu9QhAQq7+wW64hV9s+hhv9gEg8YtNi4W8HgBICJ24+whxALAYdYqPUacAkKhTACBl\nEeI+xrVTYBs6cfcR4j7GtVMAxEInDgA+RycOACmKEPcx+kXYhjXrvpghPmvWLN1yyy0qKipyYx5c\no76+3usRgISwZt0XM8RnzpypdevWuTELrrN69WmvRwAScvo0a9ZtMUO8rKxM/fr1c2MWXGfTJq8n\nAOB3dOK+FvZ6ACAh4XDY6xHSTmZX7CQQCHTFbtCGQGCZ1yMACVm2jDXrpk6HOOeIA4B3qFMAwGIx\nQ3zatGm67777tH//fg0cOFBvvfWWG3MBAOLQ6bfdo+vNmjVLa9as0YABA7Rnzx6vxwE6dOTIEc2Y\nMUNffPGFAoGAfvSjH+m5557zeqy0QYj70ObNm5Wdna0ZM2YQ4vC9hoYGNTQ0yHEcnT17ViUlJVq9\nerXy8/O9Hi0t0In7EOfmwya5ublyHEeSlJ2drfz8fH322WceT5U+CHEAXSYcDquurk4jR470epS0\nQYgD6BJnz57V1KlT9frrrys7O9vrcdIGIQ6g07788ktNmTJF06dP1+TJk70eJ60Q4gA6xRijH/7w\nhyooKNDcuXO9HiftEOI+xLn5sMmWLVv0zjvvqKamRsFgUMFgkCufuohTDAHAYhyJA4DFCHEAsBgh\nDgAWI8QBwGKEOABYjBBHygqHw8rKytLdd98tScrIyFAwGJTjOCopKdHWrVslSQcPHpTjOOrdu7eX\n4wJJ4RRDpKxwOKzKysrolSB79+6tpqYmSdL69ev18ssvKxQKRe9/7e2ALTgSR1o6c+aMcnJyvB4D\n6LQu+UPJgA0uXLigYDCoixcv6tixY9q4caPXIwGdRogjbWRlZamurk6S9OGHH2rGjBn65z//6fFU\nQOdQpyAt3XvvvWpsbFRjY6PXowCdQogjLe3bt0+XL1/WzTff7PUoQKdQpyBtXOnEpZbLpy5fvlyB\nQMDjqYDOIcSRNpqbm70eAehy1ClIWZmZmTpz5kz0zT7tufJmn9zcXJcmA7oOb/YBAItxJA4AFiPE\nAcBihDgAWIwQBwCLEeIAYLH/Ads4I9fDHtcqAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x8a03fd0>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now the same with a boxplot => it does not work" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ax.set_ylim(0,20)\n", | |
"fig" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEYCAYAAACqfMY2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF2NJREFUeJzt3V1wVPUdxvFnSeo0EArEgnEUGiwWE5Jw1mAQS0oQCEPH\ntChURZEEKh0d0VJb62AvykvHMiPV0XrT4UKhllboBVNFKGXIUkIRHEiAjlAcYCkoUcJbw1sx7L8X\nKQuBJPuS5Jzz3/1+ZlJz2N2zv3T/8+TkydmTgDHGCABgpR5eDwAASB4hDgAWI8QBwGKEOABYjBAH\nAIsR4gBgMUIcMWVkZCgYDMpxHJWUlGjr1q1duv9QKKTKysoO77Np06Yuf1435OXl6eTJkzf8e3Z2\ndtL7rK6u1h133KFgMKj8/HwtXLiwMyPCcoQ4YurZs6fq6upUX1+vX//615o3b57rM9TU1Ogf//hH\n0o83xsiLt0QEAoGE/j3efS5ZsiT6mixbtkyHDx9Oen+wGyGOhJw5c0Y5OTmSWoLxhRdeUFFRkYqL\ni7Vy5UpJ0ty5c7Vo0SJJ0l//+leNGTNGxhhVV1frqaee0j333KOhQ4dqzZo1N+z/5MmTmjx5soYP\nH65Ro0Zpz549CofD+t3vfqfXXntNwWBQtbW1rR5z/PhxTZgwQYWFhZo9e3b06DccDmvo0KGqqqpS\nUVGRjhw50ua81/8kMGfOHC1btkxSy5H0iy++qOLiYo0cOVIHDhyIPufUqVNVWlqq0tLS6DeYEydO\nqKKiIjpLR984nn/+eRUWFmr8+PFqbGzUgQMHVFJSEr39k08+abV9rSv7PX/+vCSpV69e7T4PUpwB\nYsjIyDCO45i77rrL9OnTx+zcudMYY8yf//xnM2HCBBOJRMznn39uBg0aZBoaGsz58+fNsGHDzMaN\nG83QoUPNwYMHjTHGVFVVmUmTJhljjPnkk0/M7bffbi5evGhqamrMAw88YIwxZs6cOWbhwoXGGGM2\nbtxoHMcxxhgzf/5885vf/KbN+Z555hmzePFiY4wx69atM4FAwJw4ccIcOnTI9OjRw2zbtq3deY8d\nO9bq+a/MsGzZMmOMMXl5eebll182xhizfPny6P2mTZtmamtrjTHGHD582OTn5xtjjHn22WfNokWL\njDHGrFmzJjrL9QKBgFmxYoUxxpiFCxeaOXPmGGOMGTt2rKmvrzfGGDNv3jzz5ptv3vDYqqoqM3jw\nYOM4jsnOzja/+MUv2nnlkA44EkdMWVlZqqur0969e7Vu3To98cQTkqTa2lo99thjCgQCGjBggMaM\nGaPt27crKytLS5cu1YQJE/Tss89q8ODBklpqgIcffliSNGTIEN1xxx3at29fq+fasmVLdP9jx47V\niRMn1NTUJEntHtVu2bJFjz76qCRp4sSJ6tevX/S2b3zjGyotLY3e7/p5P/roo5jVxrRp0yRJjz76\naLSX37Bhg+bMmaNgMKjvf//7ampq0rlz57R582ZNnz5dkvTd73631SzX6tGjhx555BFJ0vTp06M/\nXTz55JN66623FIlEtHLlSj322GM3PPbaOqWhoUEbNmyw8vcF6BqZXg8Au9x7771qbGzU8ePHFQgE\nWgWrMSYaiLt371b//v316aefdri/Hj1uPI5oL6w70t5jrq8Zrr9fIBBQZmamIpFI9N8uXLjQ7vNc\n+fqMMdq2bZtuuummuGdpz7X/vz300ENasGCB7r//fo0YMaLdbwJX9OrVS+Xl5aqtrdWoUaMSel6k\nBo7EkZB9+/YpEono61//usrKyvTuu+8qEono+PHj2rx5s0pLS3X48GG9+uqrqqur09q1a7V9+3ZJ\nLWG1atUqGWN04MABHTx4UEOHDm21/7KyMv3hD3+Q1NJV9+/fX71791bv3r2jR+TX+/a3vx3tt9ev\nX69Tp061eb/r5/373/+u0tJSDRo0SB9//LEuXbqk06dPa+PGja0e9+6770b/e99990mSKioq9MYb\nb0Tvs2vXLknSd77zHa1YsUKStHbt2nZniUQiWrVqlSRpxYoVKisrkyR99atf1cSJE/X0009r5syZ\nbT5WuvqNorm5Wdu2bdOQIUPavS9SnDctDmxypRN3HMcMHz7cfPDBB9HbXnjhBVNYWGiKiorMypUr\njTHGjB8/3rz33nvGGGN27NhhioqKzMWLF011dbV56qmnzIgRI8y3vvUts2bNGmOMMaFQyFRWVhpj\njDl58qSZPHmyKS4uNqNGjTJ79uwxxhizf/9+U1xcbBzHiXbRV3zxxRdm3LhxprCw0MyePdvceuut\n5tKlS+bQoUOmqKio1X3bmtcYY37+85+bO++801RUVJgpU6a06sRffPFFU1xcbEpLS82BAweMMcY0\nNjaaRx55xBQXF5uCggLz9NNPG2OMOXHihKmoqDDDhg0zs2fPNnl5eW124tnZ2eb55583hYWFZty4\ncaaxsTF629atW83tt99uIpFIm69HdXV1tBMvKCgwzz33XIevH1JbwBguRQt3zJw5U5WVlXrooYe6\ndL+XLl1SRkaGMjIytHXrVj3zzDPauXNnl+x78ODB2rFjR/SMHDcsWbJETU1NWrBggWvPCXvRicN6\n//73v/Xwww8rEonopptu0tKlS9u9b3l5uXbv3q2GhoY2++zrdeZ87mQ8+OCDOnTo0A2VDtAejsSR\nNsLhsAoKCjRo0CD96le/0tSpU70eCeg0frGJtLF8+XKNHz9eTzzxRPTNPIDtOBJH2hgyZIgWLFig\n0tJSDRs2TEePHtWAAQO8HgvoFI7EkRZqa2v16aef6nvf+57uvPNOFRQURE8FBGxGiCMtLFu2TBUV\nFerdu7ck6Qc/+AGVClICdQpS3oULF5Sbm6tIJBK9BOx///tfnT59WvX19SouLvZ4QiB5HIkj5a1e\nvVqZmZnau3evdu3apV27dmnv3r0qKyvT8uXLvR4P6BSOxJHyJk2apMLCQr3yyiut/n3VqlX68Y9/\nrKNHj7Z5DRfABoQ4AFgs5uHHv/71LwWDwehHnz59Wl34BwDgnYSOxCORiG677TZt375dAwcO7M65\nAABxSKgI3LBhg775zW8S4ADgEwmF+J/+9Kc2/9IIAMAbcdcply5d0m233aaPP/5Y/fv3v7oDl6/y\nBgDpqL2ojvtStGvXrlVJSUmrAI+1c3TO/PnzNX/+fK/HAOIWCMyXMfO9HiPldHSwHHed8sc//jH6\nB2MBAP4QV4ifO3dOGzZs6PK/yIKOhcNhr0cAEhT2eoC0E1ed0qtXLzU2Nnb3LLiO4zhejwAkiDXr\ntk6/YzMQCNCJA5AkBQIScdD1OspZLhgBoMv88pdeT5B+CHEfC4VCXo8AJKS8POT1CGmHEAcAi9GJ\nA4DP0YkDQIoixH2MThy2Yc26jxAH0GXeftvrCdIPnTiALsN54t2DThwAUhQh7mP0i7BPyOsB0g4h\nDgAWoxMH0GXoxLsHnTiAhOXktIRyIh9S4o/JyfH267QdIe5jdOLw0qlTLUfViXzU1IQSfsypU15/\npXYjxAHAYnTiANrkVr9Njx4bnTgApChC3MfoxGEb1qz7CHEAsBidOIA20Yn7B504AKQoQtzH6Bdh\nG9as+whxALAYnTiANtGJ+wedOACkKELcx+gXYRvWrPtihvjp06c1depU5efnq6CgQB9++KEbcwEA\n4hCzE6+qqtKYMWM0a9YsNTc369y5c+rTp8/VHdCJAymJTtw/OsrZDkP8zJkzCgaDOnjwYFI7B2Av\nQtw/kv7F5qFDh9S/f3/NnDlTd999t2bPnq3z5893y5C4Ef0ibMOadV9mRzc2Nzdr586devPNN3XP\nPfdo7ty5Wrx4sRYuXNjqftXV1crLy5Mk9e3bV47jqLy8XNLVF5Vtttm2a9sooND//1pPy61X/wxy\ne9v1MW5va7tGkmS6/euxafvK5+FwWLF0WKc0NDRo1KhROnTokCSptrZWixcv1vvvv391B9QpQEqi\nTvGPpOuU3NxcDRw4UPv375ckbdiwQcOGDev6CQEASYl5iuFvf/tbPf744xo+fLh2796tl156yY25\nIPpF2Ic1674OO3FJGj58uD766CM3ZgEAJIhrpwBoE524f3DtFABIUYS4j9EvwjasWfcR4gBgMTpx\nAG2iE/cPOnEASFGEuI/RL8I2rFn3EeIAYDE6cQBtohP3DzpxAEhRhLiP0S/CNqxZ9xHiAGAxOnEA\nbaIT9w86cQBIUYS4j9EvwjasWfcR4gBgMTpxAG2iE/cPOnEASFGEuI/RL8I2rFn3EeIAYDE6cQBt\nohP3DzpxAEhRhLiP0S/CNqxZ9xHiAGAxOnEAbaIT9w86cQBIUYS4j9EvwjasWfdlxnOnvLw8fe1r\nX1NGRoa+8pWvaPv27d09FwAgDnF14oMHD9aOHTuUk5Nz4w7oxIGURCfuH13SiRPUAOA/cYV4IBDQ\n+PHjNWLECC1durS7Z8L/0S/CNqxZ98XViW/ZskW33nqrjh8/rgkTJuiuu+5SWVlZ9Pbq6mrl5eVJ\nkvr27SvHcVReXi7p6ovKdtvbgUBAybjyk5HX87Od2tuBQMu2VP7//8bark/w/iFlZ1/d9vrr9cv2\nlc/D4bBiSfg88QULFig7O1s//elPW3ZAJ95t6AphG9Zs9+hUJ37+/Hk1NTVJks6dO6f169erqKio\naycEACQlZp3y+eef68EHH5QkNTc36/HHH1dFRUW3Dwap5UfPco9nABIREmvWXTFDfPDgwaqvr491\nNwCAB7h2io/RL8I2rNnuwbVTLPXLX3o9AZAY1qz7CHEfKy8PeT0CkBDWrPsIcQCwGJ04APgcnTgA\npChC3MeufQsuYAPWrPsIcR97+22vJwASw5p1H524j3HOLWzDmu0edOIAkKIIcV8LeT0AkKCQ1wOk\nHUIcACxGJ+5j9IuwDWu2e9CJW4rrUMA2rFn3EeI+xnUoYBvWrPsIcQCwGJ04APgcnTgApChC3Me4\nDgVsw5p1HyHuY1yHArZhzbqPTtzHOOcWtmHNdg86cQBIUYS4r4W8HgBIUMjrAdIOIQ4AFqMT9zH6\nRdiGNds96MQtxXUoYBvWrPsIcR/jOhSwDWvWfXGF+OXLlxUMBlVZWdnd8wAAEhBXJ/7qq69qx44d\nampq0l/+8pfWO6ATB4Bu1alO/OjRo/rggw/05JNPEtYA4DMxQ/wnP/mJXnnlFfXoQX3uNq5DAduw\nZt2X2dGN77//vgYMGKBgMNjhi1NdXa28vDxJUt++feU4jsrLyyVdfVHZTny75ToU/pmHbbZDoZDG\njh2rZBhjfDG/DdtXPg+Hw4qlw078pZde0u9//3tlZmbq4sWL+s9//qMpU6Zo+fLlV3dAJ95tOOcW\ngNRxzsb9Zp9NmzZpyZIleu+99+LeOTqHEAcgdeGbfQKBQJcMhHiFvB4ASMi1dQDc0WEnfq0xY8Zo\nzJgx3TkLACBBXDvFx6hTAEhcO8VaXIcCQCyEuI9xHQrYhk7cfYQ4AFiMThwAfI5OHABSFCHuY/SL\nsA1r1n2EuI+1XDsFANpHJ+5jnCcOQKITB4CURYj7WsjrAYCE0Im7jxAHAIvRifsYnTgAiU7cF3Jy\nWkI5kQ8p8cfk5Hj7dQJwFyHuklOnWo6qE/moqQkl/JhTp7z+SpHO6MTdR4gDgMXoxF3iVr9Njw6k\nHjpxAEhRhLiP0S/CNqxZ9xHiAGAxOnGX0IkDSBadOACkKELcx+gXYRvWrPsIcQCwGJ24S+jEASSL\nThwAUhQh7mP0i7ANa9Z9MUP84sWLGjlypBzHUUFBgebNm+fGXACAOMTViZ8/f149e/ZUc3OzRo8e\nrSVLlmj06NEtO6ATjwudOIBkdboT79mzpyTp0qVLunz5snK4aDUA+EJcIR6JROQ4jm655RaNHTtW\nBQUF3T0XRL8I+7Bm3ZcZz5169Oih+vp6nTlzRhMnTlQoFFJ5eXn09urqauXl5UmS+vbtK8dxordf\neVHTfVty5/mkkEIh779ettNzu76+3lfz2Lp95fNwOKxYEj5PfNGiRcrKytLPfvazlh3QiceFThxA\nsjrViTc2Nur06dOSpAsXLuhvf/ubgsFg104IAEhKzBA/duyY7r//fjmOo5EjR6qyslLjxo1zY7a0\nd+2PVoANWLPui9mJFxUVaefOnW7MAgBIENdOcQmdOIBkce0UAEhRhLiP0S/CNqxZ9xHiAGAxOnGX\n0IkDSBadOACkKELcx+gXYRvWrPsIcQCwGJ24S+jEASSLThwAUhQh7mP0i7ANa9Z9hDgAWIxO3CV0\n4gCS1VHOxvWXfdB5RgEp4MbzXP1fAKmPOsUlAZmWQ+QEPkI1NQk/JkCAw0N04u4jxAHAYnTiLqET\nB5AszhMHgBRFiPsY/SJsw5p1HyEOABajE3cJnTiAZNGJA0CKIsR9jH4RtmHNuo8QBwCL0Ym7hE4c\nQLLoxAEgRRHiPka/CNuwZt0XM8SPHDmisWPHatiwYSosLNQbb7zhxlwAgDjE7MQbGhrU0NAgx3F0\n9uxZlZSUaPXq1crPz2/ZAZ14XOjEASSrU514bm6uHMeRJGVnZys/P1+fffZZ104IAEhKQp14OBxW\nXV2dRo4c2V3z4Br0i7ANa9Z9cf9ln7Nnz2rq1Kl6/fXXlZ2d3eq26upq5eXlSZL69u0rx3FUXl4u\n6eqLmu7bkjvPJ4UUCnn/9bKdntv19fW+msfW7Sufh8NhxRLXeeJffvmlHnjgAU2aNElz585tvQM6\n8bjQiQNIVkc5GzPEjTGqqqrSzTffrNdeey2hneMqQhxAsjr1i80tW7bonXfeUU1NjYLBoILBoNat\nW9flQ+JG1/5oBdiANeu+mJ346NGjFYlE3JgFAJAgrp3iEuoUAMni2ikAkKIIcR+jX4RtWLPuI8QB\nwGJ04i4JBNx5nn79pJMn3XkuAO7oKGfjfscmOieZ73P8khJALNQpvhbyegAgIXTi7iPEAcBidOI+\nRp0CQOI8cQBIWYS4j1VVhbweAUgInbj7CHEfq672egIAfkcnDgA+RycOACmKEPcx+kXYhjXrPkIc\nACxGiPtYKFTu9QhAQq7+wW64hV9s+hhv9gEg8YtNi4W8HgBICJ24+whxALAYdYqPUacAkKhTACBl\nEeI+xrVTYBs6cfcR4j7GtVMAxEInDgA+RycOACmKEPcx+kXYhjXrvpghPmvWLN1yyy0qKipyYx5c\no76+3usRgISwZt0XM8RnzpypdevWuTELrrN69WmvRwAScvo0a9ZtMUO8rKxM/fr1c2MWXGfTJq8n\nAOB3dOK+FvZ6ACAh4XDY6xHSTmZX7CQQCHTFbtCGQGCZ1yMACVm2jDXrpk6HOOeIA4B3qFMAwGIx\nQ3zatGm67777tH//fg0cOFBvvfWWG3MBAOLQ6bfdo+vNmjVLa9as0YABA7Rnzx6vxwE6dOTIEc2Y\nMUNffPGFAoGAfvSjH+m5557zeqy0QYj70ObNm5Wdna0ZM2YQ4vC9hoYGNTQ0yHEcnT17ViUlJVq9\nerXy8/O9Hi0t0In7EOfmwya5ublyHEeSlJ2drfz8fH322WceT5U+CHEAXSYcDquurk4jR470epS0\nQYgD6BJnz57V1KlT9frrrys7O9vrcdIGIQ6g07788ktNmTJF06dP1+TJk70eJ60Q4gA6xRijH/7w\nhyooKNDcuXO9HiftEOI+xLn5sMmWLVv0zjvvqKamRsFgUMFgkCufuohTDAHAYhyJA4DFCHEAsBgh\nDgAWI8QBwGKEOABYjBBHygqHw8rKytLdd98tScrIyFAwGJTjOCopKdHWrVslSQcPHpTjOOrdu7eX\n4wJJ4RRDpKxwOKzKysrolSB79+6tpqYmSdL69ev18ssvKxQKRe9/7e2ALTgSR1o6c+aMcnJyvB4D\n6LQu+UPJgA0uXLigYDCoixcv6tixY9q4caPXIwGdRogjbWRlZamurk6S9OGHH2rGjBn65z//6fFU\nQOdQpyAt3XvvvWpsbFRjY6PXowCdQogjLe3bt0+XL1/WzTff7PUoQKdQpyBtXOnEpZbLpy5fvlyB\nQMDjqYDOIcSRNpqbm70eAehy1ClIWZmZmTpz5kz0zT7tufJmn9zcXJcmA7oOb/YBAItxJA4AFiPE\nAcBihDgAWIwQBwCLEeIAYLH/Ads4I9fDHtcqAAAAAElFTkSuQmCC\n", | |
"prompt_number": 7, | |
"text": [ | |
"<matplotlib.figure.Figure at 0x8a03fd0>" | |
] | |
} | |
], | |
"prompt_number": 7 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment