Created
July 31, 2015 20:01
-
-
Save jose-roberto-abreu/7af98275f5e3877d3a2b to your computer and use it in GitHub Desktop.
Percetron Simple Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"cells": [{"cell_type": "code", "execution_count": null, "source": "import numpy as np\nimport matplotlib.pyplot as plt\n\ndef loadDataSet():\n X = np.array([[1,1],[0,1],[1,0],[0,0]])\n y = np.array([1,-1,-1,-1])\n return X,y\n\nX,y = loadDataSet()\nn_observations,n_features = X.shape\nweights = np.zeros((1,n_features))\nbias = 0\n\nhasConverged = False\nwhile not hasConverged:\n hasConverged = True\n for n in range(n_observations):\n #activation\n a = X[n].dot(weights.T) + bias\n if y[n]*a <= 0:\n hasConverged = False\n #print(\"Classification error\")\n weights += y[n]*X[n]\n bias += y[n]\n \nprint(\"Weights : %s and Bias %d\" % (weights,bias))\n\n#Scatter Plot\nx_pos = X[y==1]\nx_neg = X[y==-1]\n\nplt.scatter(x_pos[:,0],x_pos[:,1],c=\"blue\")\nplt.scatter(x_neg[:,0],x_neg[:,1],c=\"red\")\n\n#show portion of decision boundary (2 dimension)\nX_line = np.linspace(-3,3,100)\nY_line = (-weights[0][0]/weights[0][1])*X_line - bias/(weights[0][1])\nplt.plot(X_line,Y_line)\nplt.show()", "outputs": [], "metadata": {"collapsed": false, "trusted": true}}], "nbformat_minor": 0, "nbformat": 4, "metadata": {"language_info": {"mimetype": "text/x-python", "codemirror_mode": {"name": "ipython", "version": 3}, "pygments_lexer": "ipython3", "name": "python", "nbconvert_exporter": "python", "version": "3.4.3", "file_extension": ".py"}, "kernelspec": {"display_name": "Python 3", "name": "python3", "language": "python"}}} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment