Created
April 8, 2012 07:32
-
-
Save josefslerka/2335620 to your computer and use it in GitHub Desktop.
Jak zklastrovat uzivatele Twitteru podle podobnosti v siti a jak je vykreslit
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require("igraph") | |
g <- read.graph("listalumia.txt", format="ncol", directed=TRUE) | |
# funkce similirarity vychazi z stuie Friends and Neighbors on the Web (http://www.hpl.hp.com/research/idl/papers/web10/fnn2.pdf) | |
m <-similarity.dice(g) | |
colnames(m)=c(V(g)$name) | |
rownames(m)=colnames(m) | |
d <- dist(m, method = "euclidean") # distance matrix | |
fit <- hclust(d, method="ward") | |
plot(fit) # display dendogram | |
groups <- cutree(fit, k=5) # cut tree into 5 clusters | |
rect.hclust(fit, k=5, border="red") | |
# dalsi moznost Classical MDS | |
# http://www.statmethods.net/advstats/mds.html | |
# N rows (objects) x p columns (variables) | |
# each row identified by a unique row name | |
d <- dist(m) # euclidean distances between the rows | |
fit <- cmdscale(d,eig=TRUE, k=2) # k is the number of dim | |
fit # view results | |
# plot solution | |
x <- fit$points[,1] | |
y <- fit$points[,2] | |
plot(x, y, xlab="Coordinate 1", ylab="Coordinate 2", | |
main="Metric MDS", type="n") | |
text(x, y, labels = row.names(m), cex=.7) | |
# dalsi moznost Nonmetric MDS | |
# http://www.statmethods.net/advstats/mds.html | |
# Nonmetric MDS | |
# N rows (objects) x p columns (variables) | |
# each row identified by a unique row name | |
library(MASS) | |
d <- dist(m) # euclidean distances between the rows | |
fit <- isoMDS(d, k=2) # k is the number of dim | |
fit # view results | |
# plot solution | |
x <- fit$points[,1] | |
y <- fit$points[,2] | |
plot(x, y, xlab="Coordinate 1", ylab="Coordinate 2", | |
main="Nonmetric MDS", type="n") | |
text(x, y, labels = row.names(m), cex=.7) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment