Created
September 1, 2017 14:03
-
-
Save josejimenezluna/ac9be1abd2bebe9ad8da5c645a1d0b5e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.linalg import norm, solve | |
from scipy.spatial.distance import cdist | |
from sklearn.neighbors import kneighbors_graph | |
def phi(l, mu): | |
return (mu * (np.sqrt(l) - 1)**2) | |
def eye_vector(length, position): | |
v = np.zeros((length, )) | |
v[position] = 1 | |
return v | |
def computeA(W, L): | |
n = W.shape[0] | |
A = np.zeros((n, n)) | |
for i in range(n): | |
for j in range(n): | |
e = eye_vector(n, i) - eye_vector(n, j) | |
A += W[i, j] * L[i, j] * np.dot(np.atleast_2d(e).T, np.atleast_2d(e)) | |
return A | |
def l2norm(x): | |
return np.sqrt(np.sum(x**2)) | |
def objective(X, U, W, L, landa, mu): | |
n = X.shape[0] | |
# First term | |
diff = X - U | |
f = 0.5 * np.sum([l2norm(x)**2 for x in diff]) | |
# Second term | |
s = 0.0 | |
for i in range(n): | |
for j in range(n): | |
s += W[i, j] * (L[i, j] * l2norm(U[i] - U[j])**2 + phi(L[i, j], mu)) | |
s *= landa/2 | |
return f + s | |
def update_L(U, mu): | |
n = U.shape[0] | |
L = np.zeros((n, n)) | |
for i in range(n): | |
for j in range(n): | |
L[i, j] = (mu / (mu + l2norm(U[i] - U[j])**2)) | |
return L | |
def RobustContinuousClustering(X, W, offset_mu=100, delta=0.05, eps=1e-4, | |
max_iter=100): | |
n_samples = X.shape[0] | |
d = X.shape[1] | |
chi = norm(X, ord=2) | |
U = X.copy() | |
L = np.ones((n_samples, n_samples)) | |
dists = cdist(X, X, metric='euclidean') | |
lower_bound_mu = np.max(dists**2) | |
mu = offset_mu + lower_bound_mu | |
A = computeA(W, L) | |
landa = chi / norm(A, ord=2) | |
conv_diff = 100 | |
old_C = 100 | |
i = 0 | |
while conv_diff > eps and i < max_iter: | |
# Update L | |
L = update_L(U, mu) | |
# Update A | |
A = computeA(W, L) | |
M = np.eye(n_samples) + landa * A | |
# Update U | |
# U = np.dot(X, inv(M)) | |
U = solve(M, X) | |
# Evaluate objective | |
C = objective(X, U, W, L, landa, mu) | |
print(C) | |
conv_diff = np.abs(C - old_C) | |
# Update landa and mu | |
if i % 4 == 0: | |
landa = chi / norm(A, ord=2) | |
mu = max(mu / 2, delta / 2) | |
# Keep iterating | |
old_c = C | |
i += 1 | |
return U | |
if __name__ == '__main__': | |
from sklearn.datasets import load_iris | |
iris = load_iris() | |
X = iris.data[:, np.array([2, 3])] | |
y = iris.target | |
W = kneighbors_graph(X, n_neighbors=10) | |
delta = 0.05 | |
U = RobustContinuousClustering(X, W, delta=delta) | |
d = cdist(U, U) | |
import matplotlib.pyplot as plt | |
plt.scatter(X[:, 0], X[:, 1], c=y) | |
plt.show() | |
plt.scatter(U[:, 0], U[:, 1], c=y) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment