Created
July 19, 2012 20:10
-
-
Save joshz/3146444 to your computer and use it in GitHub Desktop.
grab a tweet from twitter, do sentiment analysis with AFINN
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# | |
# wget wget http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/imm6010.zip | |
# unzip imm6010.zip | |
import math | |
import re | |
import sys | |
reload(sys) | |
sys.setdefaultencoding('utf-8') | |
# AFINN-111 is as of June 2011 the most recent version of AFINN | |
filenameAFINN = 'AFINN/AFINN-111.txt' | |
afinn = dict(map(lambda (w, s): (w, int(s)), [ | |
ws.strip().split('\t') for ws in open(filenameAFINN) ])) | |
# Word splitter pattern | |
pattern_split = re.compile(r"\W+") | |
def sentiment(text): | |
""" | |
Returns a float for sentiment strength based on the input text. | |
Positive values are positive valence, negative value are negative valence. | |
""" | |
words = pattern_split.split(text.lower()) | |
sentiments = map(lambda word: afinn.get(word, 0), words) | |
if sentiments: | |
# How should you weight the individual word sentiments? | |
# You could do N, sqrt(N) or 1 for example. Here I use sqrt(N) | |
sentiment = float(sum(sentiments))/math.sqrt(len(sentiments)) | |
else: | |
sentiment = 0 | |
return sentiment | |
if __name__ == '__main__': | |
# Single sentence example: | |
text = "Finn is stupid and idiotic" | |
print("%6.2f %s" % (sentiment(text), text)) | |
# No negation and booster words handled in this approach | |
text = "Finn is only a tiny bit stupid and not idiotic" | |
print("%6.2f %s" % (sentiment(text), text)) | |
# Example with downloading from Twitter: | |
import json as simplejson | |
import urllib | |
query = "groupon" | |
jsont = simplejson.load(urllib.urlopen("http://search.twitter.com/search.json?q=" + query)) | |
#for item in jsont['results'][:1]: | |
#for k, v in item.iteritems(): | |
#print("{:<20} {}".format(k, v)) | |
sentiments = map(sentiment, [ tweet['text'] for tweet in jsont['results'] ]) | |
print("%6.2f %s" % (sum(sentiments)/math.sqrt(len(sentiments)), query)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment