Skip to content

Instantly share code, notes, and snippets.

@joshz
Created July 19, 2012 20:10
Show Gist options
  • Save joshz/3146444 to your computer and use it in GitHub Desktop.
Save joshz/3146444 to your computer and use it in GitHub Desktop.
grab a tweet from twitter, do sentiment analysis with AFINN
#!/usr/bin/python
#
# wget wget http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/imm6010.zip
# unzip imm6010.zip
import math
import re
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
# AFINN-111 is as of June 2011 the most recent version of AFINN
filenameAFINN = 'AFINN/AFINN-111.txt'
afinn = dict(map(lambda (w, s): (w, int(s)), [
ws.strip().split('\t') for ws in open(filenameAFINN) ]))
# Word splitter pattern
pattern_split = re.compile(r"\W+")
def sentiment(text):
"""
Returns a float for sentiment strength based on the input text.
Positive values are positive valence, negative value are negative valence.
"""
words = pattern_split.split(text.lower())
sentiments = map(lambda word: afinn.get(word, 0), words)
if sentiments:
# How should you weight the individual word sentiments?
# You could do N, sqrt(N) or 1 for example. Here I use sqrt(N)
sentiment = float(sum(sentiments))/math.sqrt(len(sentiments))
else:
sentiment = 0
return sentiment
if __name__ == '__main__':
# Single sentence example:
text = "Finn is stupid and idiotic"
print("%6.2f %s" % (sentiment(text), text))
# No negation and booster words handled in this approach
text = "Finn is only a tiny bit stupid and not idiotic"
print("%6.2f %s" % (sentiment(text), text))
# Example with downloading from Twitter:
import json as simplejson
import urllib
query = "groupon"
jsont = simplejson.load(urllib.urlopen("http://search.twitter.com/search.json?q=" + query))
#for item in jsont['results'][:1]:
#for k, v in item.iteritems():
#print("{:<20} {}".format(k, v))
sentiments = map(sentiment, [ tweet['text'] for tweet in jsont['results'] ])
print("%6.2f %s" % (sum(sentiments)/math.sqrt(len(sentiments)), query))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment