Created
December 11, 2023 16:39
-
-
Save josinovmota/22f7b0ee25eba3e9c0501266f8c5b255 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from sklearn.linear_model import LinearRegression | |
# Create a predictor X | |
X = np.random.default_rng().normal(size=100) | |
# Create a Noise Vector e | |
e = np.random.default_rng().normal(size=100) | |
B_0 = 0.5 | |
B_1 = -0.3 | |
B_2 = 3 | |
B_3 = 0.7 | |
Y = B_0 + B_1 * X + B_2 * (X ** 2) + B_3 * (X ** 3) + e | |
X = X.reshape(-1, 1) | |
features = np.array([X**i for i in range(1, 11)]) | |
best_rss_set = [] | |
best_features_set = [] | |
while features.any(): | |
best_rss = None | |
best_idx = None | |
best_set = None | |
for idx, feature in enumerate(features): | |
features_set = np.hstack((best_set, feature)) | |
model = LinearRegression().fit(features_set,Y) | |
y_pred = model.predict(features_set) | |
Rss = np.sum((Y - y_pred)**2) | |
# Descobrir melhor RSS e melhor Índice | |
if best_rss == None or Rss < best_rss: | |
best_rss = Rss | |
best_idx = idx | |
best_set = features_set | |
# Alimentar a best_rss_set e a best_features_set | |
best_rss_set.append(best_rss) | |
best_features_set.append(features_set) | |
# Iterando o While | |
features = np.delete(features, best_idx) | |
# Preciso guardar o RSS e de quais features saiu esse RSS |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment