Created
December 11, 2023 16:38
-
-
Save josinovmota/5c9c58046e378cf57bfbd75705b328b5 to your computer and use it in GitHub Desktop.
Impossibru
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Create a predictor X | |
X = np.random.default_rng().normal(size=100) | |
# Create a Noise Vector e | |
e = np.random.default_rng().normal(size=100) | |
B_0 = 0.5 | |
B_1 = -0.3 | |
B_2 = 3 | |
B_3 = 0.7 | |
Y = B_0 + B_1 * X + B_2 * (X ** 2) + B_3 * (X ** 3) + e | |
X = X.reshape(-1, 1) | |
features = np.array([X**i for i in range(1, 11)]) | |
best_rss_set = [] | |
best_features_set = [] | |
while features.any(): | |
best_rss = None | |
best_idx = None | |
best_set = None | |
for idx, feature in enumerate(features): | |
features_set = np.hstack((best_set, feature)) | |
model = LinearRegression().fit(features_set,Y) | |
y_pred = model.predict(features_set) | |
Rss = np.sum((Y - y_pred)**2) | |
# Descobrir melhor RSS e melhor Índice | |
if best_rss == None or Rss < best_rss: | |
best_rss = Rss | |
best_idx = idx | |
best_set = features_set | |
# Alimentar a best_rss_set e a best_features_set | |
best_rss_set.append(best_rss) | |
best_features_set.append(features_set) | |
# Iterando o While | |
features = np.delete(features, best_idx) | |
# Preciso guardar o RSS e de quais features saiu esse RSS |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment