Created
January 17, 2018 06:51
-
-
Save joyhuang9473/b5aecd403bf18ccd77c2cee4a186fdde to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import cv2 | |
def int64_feature(value): | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) | |
def int64_list_feature(value): | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) | |
def bytes_feature(value): | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) | |
def create_tf_example(filename, image_data, label): | |
(height, width, channel) = image_data.shape | |
image_data = image_data.reshape((height*width*channel, 1)) | |
tf_example = tf.train.Example(features=tf.train.Features(feature={ | |
'image/height': int64_feature(height), | |
'image/width': int64_feature(width), | |
'image/channel': int64_feature(channel), | |
'image/filename': bytes_feature(filename), | |
'image/encoded': int64_list_feature(image_data), | |
'image/class/label': int64_feature(label), | |
})) | |
return tf_example | |
def parse_tf_example(serialized_example): | |
example = tf.parse_single_example(serialized_example, features={ | |
'image/height': tf.FixedLenFeature([], tf.int64), | |
'image/width': tf.FixedLenFeature([], tf.int64), | |
'image/channel': tf.FixedLenFeature([], tf.int64), | |
'image/filename' : tf.FixedLenFeature([], tf.string), | |
'image/encoded' : tf.VarLenFeature(tf.int64), | |
'image/class/label' : tf.FixedLenFeature([], tf.int64), | |
}) | |
height = tf.cast(example['image/height'], tf.int64) | |
width = tf.cast(example['image/width'], tf.int64) | |
channel = tf.cast(example['image/channel'], tf.int64) | |
image = tf.sparse_tensor_to_dense(example['image/encoded'], default_value=0) | |
image = tf.reshape(image, tf.stack([height, width, channel])) | |
label = tf.cast(example['image/class/label'], tf.int64) | |
return { 'image': image, 'label': label } | |
if __name__ == '__main__': | |
''' | |
Create tfrecord | |
''' | |
filename = 'test.jpg' | |
image_data = cv2.imread(filename, 1) | |
label = 1 | |
# write img ndarray in tfrecord | |
writer = tf.python_io.TFRecordWriter('test.tfrecord') | |
example = create_tf_example(filename, image_data, label) | |
writer.write(example.SerializeToString()) | |
writer.close() | |
''' | |
Read tfrecord | |
''' | |
dataset = tf.data.TFRecordDataset('test.tfrecord') | |
dataset = dataset.map(parse_tf_example) | |
iterator = dataset.make_initializable_iterator() | |
data = iterator.get_next() | |
with tf.Session() as sess: | |
sess.run(iterator.initializer) | |
example = sess.run(data) | |
print(example['image']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment