Last active
November 8, 2015 23:24
-
-
Save jozefg/04d00ee301ee2caab706 to your computer and use it in GitHub Desktop.
ir in agda
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module ind-rec where | |
open import Data.Empty | |
open import Data.Product | |
open import Function | |
open import Level | |
record ⊤ {ℓ : Level} : Set ℓ where | |
constructor tt | |
mutual | |
data Code : Set → Set₁ where | |
ι : {A : Set} → A → Code A | |
σ : {B : Set}(A : Set) → (A → Code B) → Code B | |
δ : {B : Set}(A : Set) → ((A → B) → Code B) → Code B | |
-- Unfold one level of a type | |
decode₁ : (U D : Set)(T : U → D) → Code D → Set | |
decode₁ U D T (ι x) = ⊤ | |
decode₁ U D T (σ A c) = Σ A λ a → decode₁ U D T (c a) | |
decode₁ U D T (δ A c) = Σ (A → U) λ a → decode₁ U D T (c (T ∘ a)) | |
-- Unfold one level of the recursive component of an IR defn | |
decode₂ : {U D : Set}(T : U → D)(δ : Code D) → decode₁ U D T δ → D | |
decode₂ T (ι x) arg = x | |
decode₂ T (σ A x) (a , rest) = decode₂ T (x a) rest | |
decode₂ T (δ A x) (f , rest) = decode₂ T (x (T ∘ f)) rest | |
mutual | |
data U {D : Set}(γ : Code D) : Set where | |
intro : decode₁ (U γ) D (T γ) γ → U γ | |
{-# NO_TERMINATION_CHECK #-} -- Can we do without this? | |
T : {D : Set}(γ : Code D) → U γ → D | |
T γ (intro x) = decode₂ (T γ) γ x | |
ih : {ℓ : Level}(U D : Set)(T : U → D)(γ : Code D) | |
→ decode₁ U D T γ | |
→ (U → Set ℓ) | |
→ Set ℓ | |
ih U D T (ι x) arg E = ⊤ | |
ih U D T (σ A x) (a , rest) E = ih U D T (x a) rest E | |
ih U D T (δ A x) (f , rest) E = | |
((x : A) → E (f x)) × ih U D T (x (T ∘ f)) rest E | |
call : {ℓ : Level}{U : Set}{D : Set}{T : U → D}(γ : Code D){E : U → Set ℓ} | |
→ ((a : U) → E a) | |
→ (a : decode₁ U D T γ) → ih _ _ _ γ a E | |
call (ι x) f a = tt | |
call (σ A x) f (a , rest) = call (x a) f rest | |
call {T = T} (δ A x) f (a , rest) = (f ∘ a) , call (x (T ∘ a)) f rest | |
{-# NO_TERMINATION_CHECK #-} | |
rec : {ℓ : Level}{D : Set}(γ : Code D){E : U γ → Set ℓ} | |
→ ((a : decode₁ (U γ) D (T γ) γ) → ih _ _ _ γ a E → E (intro a)) | |
→ (a : U γ) → E a | |
rec (ι x) f (intro a) = f a tt | |
rec (σ A x) f (intro (a , rest)) = | |
f (a , rest) (call (x a) (rec (σ A x) f) rest) | |
rec (δ A x) f (intro (a , rest)) = | |
f (a , rest) (rec _ f ∘ a , call (x (T _ ∘ a)) (rec _ f) rest) | |
data Two : Set where | |
one : Two | |
two : Two | |
ℕ : Code ⊤ | |
ℕ = σ Two λ { one → ι tt; two → δ ⊤ λ _ → ι tt } | |
z : U ℕ | |
z = intro (one , tt) | |
s : U ℕ → U ℕ | |
s n = intro (two , (λ _ → n) , tt) | |
recℕ : {A : U ℕ → Set} → A z → ((n : U ℕ) → A n → A (s n)) | |
→ (n : U ℕ) → A n | |
recℕ {A = A} zc sc a = rec ℕ go a | |
where go : (a : decode₁ (U ℕ) ⊤ (T ℕ) ℕ) → ih _ _ _ ℕ a A → A (intro a) | |
go (one , tt) ih = zc | |
go (two , n , tt) (ih , tt) = sc (n tt) (ih tt) | |
plus : U ℕ → U ℕ → U ℕ | |
plus n m = recℕ m (λ _ → s) n |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment