Last active
August 29, 2015 14:24
-
-
Save jozefg/15430bca7ecda7d0370d to your computer and use it in GitHub Desktop.
conats in JonPRL built from nats and \bigcap
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Operator iterate : (0; 1; 0). | |
[iterate(N; F; B)] =def= [natrec(N; B; _.x.so_apply(F; x))]. | |
Operator top : (). | |
[top] =def= [⋂(void; _.void)]. | |
Theorem top-is-top : | |
[⋂(base; x. | |
⋂(base; y. | |
=(x; y; top)))] { | |
unfold <top>; auto | |
}. | |
Operator conatF : (0). | |
[conatF(X)] =def= [+(unit; X)]. | |
Operator conat : (). | |
[conat] =def= [⋂(nat; n.iterate(n; x.conatF(x); top))]. | |
Tactic unfolds { | |
unfold <conat iterate conatF top> | |
}. | |
Tactic rauto { | |
*{reduce; auto} ||| May not terminate but shh | |
}. | |
Theorem czero : [∈(inl(<>); conat)] { | |
refine <unfolds>; refine <rauto>; elim #1; refine <rauto> | |
}. | |
Theorem csucc : [⋂(conat; x. ∈(inr(x); conat))] { | |
refine <unfolds>; auto; | |
elim #2; focus 1 #{elim #1 [n']}; | |
refine <rauto>; | |
hyp-subst ← #6 [h.=(h; h; natrec(n'; ⋂(void; _.void); _.x.+(unit;x)))]; | |
refine <rauto> | |
}. | |
Operator Y : (0). | |
[Y(f)] =def= [ap(λ(x.ap(f;ap(x;x)));λ(x.ap(f;ap(x;x))))]. | |
Operator omega : (). | |
[omega] =def= [Y(λ(x.inr(x)))]. | |
Theorem omega-wf : [∈(omega; conat)] { | |
refine <unfolds>; unfold <omega Y>; auto; elim #1; | |
focus 0 #{reduce 1; auto}; | |
csubst [ceq(ap(λ(x.ap(λ(x.inr(x));ap(x;x)));λ(x.ap(λ(x.inr(x));ap(x;x)))); | |
inr(ap(λ(x.ap(λ(x.inr(x));ap(x;x)));λ(x.ap(λ(x.inr(x));ap(x;x))))))] | |
[h.=(h;h; natrec(succ(n'); ⋂(void; _. void); _.x.+(unit; x)))]; | |
[step; step; auto, reduce 1; auto] | |
}. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment