Last active
October 16, 2018 13:19
-
-
Save jozefg/36f263f9540ea4e8012dfe83f54b5f2d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module wf-too-strong where | |
open import Data.Product using (proj₁; proj₂; _,_; _×_; Σ-syntax) | |
open import Data.Sum using (_⊎_; inj₁; inj₂) | |
open import Data.Nat using (ℕ; zero; suc; _+_; _≤_; z≤n; s≤s; _≟_) | |
open import Data.Nat.Properties using (≤-antisym; ≤-refl; ≤-step) | |
open import Data.Empty using (⊥; ⊥-elim) | |
open import Data.Unit using (⊤; tt) | |
open import Relation.Nullary using (Dec; yes; no) | |
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst) | |
min : {A : Set} → (A → Set) → (A → A → Set) → A → Set | |
min {A} P _≤_ m = {x : A} → P x → m ≤ x | |
-- A problematic definition of well-foundedness | |
StrongWF : (A : Set) → (A → A → Set) → Set₁ | |
StrongWF A _≤_ = (P : A → Set){a : A} → P a → Σ[ m ∈ A ] P m × min P _≤_ m | |
min-unique : (P : ℕ → Set){m n : ℕ} → P m → P n → min P _≤_ m → min P _≤_ n → n ≡ m | |
min-unique P p-m p-n min-m min-n = ≤-antisym (min-n p-m) (min-m p-n) | |
module parity where | |
data Even : ℕ → Set | |
data Odd : ℕ → Set | |
data Even where | |
zero : Even 0 | |
suc-odd : {n : ℕ} → Odd n → Even (suc n) | |
data Odd where | |
suc-even : {n : ℕ} → Even n → Odd (suc n) | |
parity : (n : ℕ) → Even n ⊎ Odd n | |
parity zero = inj₁ zero | |
parity (suc n) with parity n | |
... | inj₁ p = inj₂ (suc-even p) | |
... | inj₂ p = inj₁ (suc-odd p) | |
not-both : (n : ℕ) → Even n → Odd n → ⊥ | |
not-both zero n-even () | |
not-both (suc n) (suc-odd n-odd) (suc-even n-even) = not-both n n-even n-odd | |
double : ℕ → ℕ | |
double zero = zero | |
double (suc n) = suc (suc (double n)) | |
div-2 : {n : ℕ} → Even n → ℕ | |
div-2 zero = zero | |
div-2 (suc-odd (suc-even x)) = suc (div-2 x) | |
double-monotone : (m : ℕ) → m ≤ double m | |
double-monotone zero = z≤n | |
double-monotone (suc m) = s≤s (≤-step (double-monotone m)) | |
double-even : (m : ℕ) → Even (double m) | |
double-even zero = zero | |
double-even (suc m) = suc-odd (suc-even (double-even m)) | |
double-half : (m : ℕ)(is-even : Even (double m)) → div-2 is-even ≡ m | |
double-half zero zero = refl | |
double-half (suc m) (suc-odd (suc-even m-even)) rewrite double-half m m-even = refl | |
open parity | |
lift : (ℕ → Set) → ℕ → Set | |
lift P n with parity n | |
... | inj₁ even = P (div-2 even) | |
... | inj₂ odd = ⊤ | |
lift-even : (P : ℕ → Set)(n : ℕ) → P n ≡ lift P (double n) | |
lift-even P n with parity (double n) | |
... | inj₁ x rewrite double-half n x = refl | |
... | inj₂ y = ⊥-elim (not-both _ (double-even n) y) | |
lift-odd : (P : ℕ → Set){n : ℕ} → Odd n → ⊤ ≡ lift P n | |
lift-odd P {n} odd with parity n | |
... | inj₁ x = ⊥-elim (not-both _ x odd) | |
... | inj₂ y = refl | |
∞-true : (ℕ → Set) → Set | |
∞-true P = (m : ℕ) → Σ[ n ∈ ℕ ] m ≤ n × P n | |
lift-is-∞-true : (P : ℕ → Set) → ∞-true (lift P) | |
lift-is-∞-true P m = | |
suc (double m) , ≤-step (double-monotone m) , subst (λ x → x) (lift-odd P (suc-even (double-even m))) tt | |
lift-above : ℕ → (ℕ → Set) → ℕ → Set | |
lift-above m P n = m ≤ n × P n | |
min-of-lift-above : (P : ℕ → Set)(m : ℕ) → min (lift-above m P) _≤_ m | |
min-of-lift-above _ _ prf = proj₁ prf | |
module _ (wf-nat : StrongWF ℕ _≤_) where | |
dec-min : (P : ℕ → Set){m : ℕ} → Σ[ n ∈ ℕ ] (P n) → min P _≤_ m → Dec (P m) | |
dec-min P {m} wit m-min with wf-nat P (proj₂ wit) | |
... | x , p-x , x-min with x ≟ m | |
... | yes prf = yes (subst P prf p-x) | |
... | no ¬prf = no λ p-m → ¬prf (min-unique P p-m p-x m-min x-min) | |
dec-infinite : (P : ℕ → Set) → ∞-true P → (n : ℕ) → Dec (P n) | |
dec-infinite P inf n with dec-min (lift-above n P) (inf n) (min-of-lift-above P n) | |
dec-infinite P inf n | yes (_ , prf) = yes prf | |
dec-infinite P inf n | no ¬prf = no λ prf → ¬prf (≤-refl , prf) | |
lem : (P : Set) → Dec P | |
lem P rewrite lift-even (λ _ → P) 0 = dec-infinite (lift λ _ → P) (lift-is-∞-true _) 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment