Last active
April 13, 2017 21:56
-
-
Save jozefg/a528cc6b1bb2b69c1ab0a9da1a4b46c4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module simple-bracket where | |
open import Data.Nat | |
open import Relation.Binary.PropositionalEquality | |
open import Relation.Nullary | |
record PCA : Set₁ where | |
constructor mk-pca | |
field | |
A : Set | |
_≈_ : A → A → Set | |
s : A | |
k : A | |
i : A | |
_·_ : A → A → A | |
id : ∀ {a} → i · a ≈ a | |
k-term : ∀ {a} → k · a ≈ k · a | |
k-ap : ∀ {a b} → (k · a) · b ≈ a | |
s-term : ∀ {a b} → (s · a) · b ≈ (s · a) · b | |
s-ap : ∀ {a b c} → ((s · a) · b) · c ≈ (a · c) · (b · c) | |
apcong : ∀ {a b c d} → a ≈ c → b ≈ d → a · b ≈ c · d | |
≈sym : ∀ {a b} → a ≈ b → b ≈ a | |
≈trans : ∀ {a b c} → a ≈ b → b ≈ c → a ≈ c | |
infix 3 _≈_ | |
infixl 5 _·_ | |
module NeedAPCA (P : PCA) where | |
open PCA P | |
data Term : Set where | |
var : ℕ → Term | |
ap : Term → Term → Term | |
ι : A → Term | |
bracket : ℕ → Term → Term | |
bracket n (var x) with n ≟ x | |
... | yes p = ι i | |
... | no ¬p = ap (ι k) (var x) | |
bracket n (ap t t₁) = ap (ap (ι s) (bracket n t)) (bracket n t₁) | |
bracket n (ι x) = ι (k · x) | |
sub : Term → ℕ → Term → Term | |
sub new v (var x) with v ≟ x | |
... | yes _ = new | |
... | no _ = var x | |
sub new v (ap t t₁) = ap (sub new v t) (sub new v t₁) | |
sub new v (ι x) = ι x | |
close : (ℕ → A) → Term → A | |
close σ (var x) = σ x | |
close σ (ap t t₁) = close σ t · close σ t₁ | |
close σ (ι x) = x | |
trivial-close : Term → A | |
trivial-close = close (λ x → i) | |
_≈t_ : Term → Term → Set | |
t₁ ≈t t₂ = (σ : ℕ → A) → close σ t₁ ≈ close σ t₂ | |
bracket-works : (i : ℕ)(a b : Term) → ap (bracket i a) b ≈t sub b i a | |
bracket-works i (var x) b σ with i ≟ x | |
... | yes refl = id | |
... | no ¬p = k-ap | |
bracket-works i (ap a a₁) b σ = | |
≈trans s-ap (apcong (bracket-works i a b σ) (bracket-works i a₁ b σ)) | |
bracket-works i (ι x) b σ = k-ap | |
pair : Term → Term → Term | |
pair l r = bracket 0 (ap (ap (var 0) l) r) | |
fst : Term | |
fst = bracket 0 (ap (var 0) (bracket 1 (bracket 2 (var 1)))) | |
snd : Term | |
snd = bracket 0 (ap (var 0) (bracket 1 (bracket 2 (var 2)))) | |
pair-fst-works : ∀ a b → a ≈ a → b ≈ b → ap fst (pair (ι a) (ι b)) ≈t ι a | |
pair-fst-works a b aeq beq σ = | |
≈trans | |
(bracket-works 0 | |
(ap (var 0) (bracket 1 (bracket 2 (var 1)))) | |
(pair (ι a) (ι b)) σ) | |
(≈trans | |
(bracket-works 0 | |
(ap (ap (var 0) (ι a)) (ι b)) | |
(bracket 1 (bracket 2 (var 1))) σ) | |
(≈trans (apcong (bracket-works 1 (bracket 2 (var 1)) (ι a) σ) beq) | |
(≈trans (bracket-works 2 (ι a) (ι b) σ) aeq))) | |
pair-snd-works : ∀ a b → a ≈ a → b ≈ b → ap snd (pair (ι a) (ι b)) ≈t ι b | |
pair-snd-works a b aeq beq σ = | |
≈trans | |
(bracket-works 0 | |
(ap (var 0) (bracket 1 (bracket 2 (var 2)))) | |
(pair (ι a) (ι b)) σ) | |
(≈trans | |
(bracket-works 0 | |
(ap (ap (var 0) (ι a)) (ι b)) | |
(bracket 1 (bracket 2 (var 2))) σ) | |
(≈trans (apcong (bracket-works 1 (bracket 2 (var 2)) (ι a) σ) beq) | |
(≈trans (bracket-works 2 (var 2) (ι b) σ) beq))) | |
open NeedAPCA public |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment