Last active
August 29, 2015 14:27
-
-
Save jozefg/ec4da81ea70dc4b6485b to your computer and use it in GitHub Desktop.
A proof that Type cannot be of type Type in JonPRL.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Operator Russell : (). | |
[Russell] =def= [{x : U{i} | not(member(x; x))}]. | |
Tactic break-plus { | |
@{ [x : _ + _ |- _] => elim <x> } | |
}. | |
Theorem u-in-u-wf : [member(member(U{i}; U{i}); U{i'})] { | |
unfold <member>; eq-eq-base; unfold <bunion>; auto; | |
csubst [ceq(U{i}; lam(x.snd(x)) pair(inr(<>); U{i}))] | |
[h.=(h; h; _)]; | |
aux {unfold <snd>; reduce; auto}; | |
eq-cd; ?{@{[|- =(_; _; base)] => auto}}; | |
eq-cd @i'; ?{break-plus}; reduce; auto | |
}. | |
Theorem type-not-in-type : [not(member(U{i}; U{i}))] { | |
unfold <not implies>; intro; | |
aux {lemma <u-in-u-wf>}; | |
||| This can't really be a separate theorem since | |
||| the well-formedness of Russells' set depends on | |
||| U ∈ U | |
assert [member(Russell; U{i})] <russell-wf>; | |
aux { | |
unfold <member Russell>; eq-cd; ?{assumption}; | |
unfold <not implies>; eq-cd; auto; | |
unfold <member>; eq-eq-base; auto; | |
unfold <bunion>; | |
csubst [ceq(x'; lam(x.snd(x)) pair(inr(<>); x'))] | |
[h.=(h; h; _)]; | |
aux {unfold <snd>; reduce; auto}; | |
eq-cd; ?{@{[|- =(_; _; base)] => auto}}; | |
eq-cd @i'; ?{break-plus}; reduce; auto | |
}; | |
assert [member(member(Russell; Russell); U{i})] <russell-in-russell-wf>; | |
aux { | |
unfold <member>; eq-eq-base; unfold <bunion>; auto; | |
csubst [ceq(Russell; lam(x.snd(x)) pair(inr(<>); Russell))] | |
[h.=(h; h; _)]; | |
aux {unfold <snd>; reduce; auto}; | |
eq-cd; ?{@{[|- =(_; _; base)] => auto}}; | |
eq-cd; ?{break-plus}; reduce; auto | |
}; | |
||| We can now start the proof. | |
assert [not(member(Russell; Russell))] <russell-not-in-russell>; | |
aux { | |
unfold <not implies>; | |
intro @i; aux {assumption}; | |
assert [(x : Russell) * ceq(x; Russell)]; | |
aux { | |
intro [Russell] @i; auto | |
}; | |
elim #5; | |
unfold <Russell>; elim #6; | |
assert [not(member({x:U{i} | not(member(x; x))}; {x:U{i} | not(member(x; x))}))]; | |
aux { | |
chyp-subst ← #9 [h. not(member(h; h))]; | |
unfold <not implies>; | |
intro; | |
aux { | |
unfold <member>; eq-eq-base; unfold <bunion>; auto; | |
csubst [ceq(x''; lam(x.snd(x)) pair(inr(<>); x''))] | |
[h.=(h; h; _)]; | |
aux {unfold <snd>; reduce; auto}; | |
eq-cd; ?{@{[|- =(_; _; base)] => auto}}; | |
eq-cd; ?{break-plus}; reduce; auto | |
}; | |
elim #8 [x''']; auto | |
}; | |
unfold <not implies>; | |
elim #10 [x']; auto | |
}; | |
assert [member(Russell; Russell)]; | |
aux { | |
unfold <member Russell>; eq-cd; | |
||| We've already done all the hard work of proving this | |
main {unfold <member>; assumption}; | |
unfold <not implies>; unfold <member>; eq-cd; ?{!{auto}}; | |
eq-eq-base; unfold <bunion>; auto; | |
csubst [ceq(x'; lam(x.snd(x)) pair(inr(<>); x'))] | |
[h.=(h; h; _)]; | |
aux {unfold <snd>; reduce; auto}; | |
eq-cd; ?{@{[|- =(_; _; base)] => auto}}; | |
eq-cd; ?{break-plus}; reduce; auto | |
}; | |
unfold <not implies>; elim #4 [H]; auto | |
}. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment