In open62541, all data types share the same basic API for creation, copying
and deletion. The header ua_types.h defines the builtin types. In addition,
we auto-generate ua_types_generated.h with additional types as well as the
following function definitions for all (builtin and generated) data types
T
.
void T_init(T *ptr)
- Initialize the data type. This is synonymous with zeroing out the memory, i.e. memset(dataptr, 0, sizeof(T)).
T* T_new()
- Allocate and return the memory for the data type. The memory is already initialized.
UA_StatusCode T_copy(const T *src, T *dst)
- Copy the content of the data type. Returns UA_STATUSCODE_GOOD if it succeeded.
void T_deleteMembers(T *ptr)
- Delete the dynamically allocated content of the data type, but not the data type itself.
void T_delete(T *ptr)
- Delete the content of the data type and the memory for the data type itself.
OPC UA defines 25 builtin data types. All other data types are combinations of the 25 builtin data types.
#define UA_BUILTIN_TYPES_COUNT 25U
A two-state logical value (true or false).
typedef bool UA_Boolean;
#define UA_TRUE true
#define UA_FALSE false
An integer value between -128 and 127.
typedef int8_t UA_SByte;
#define UA_SBYTE_MAX 127
#define UA_SBYTE_MIN (-128)
An integer value between 0 and 256.
typedef uint8_t UA_Byte;
#define UA_BYTE_MAX 256
#define UA_BYTE_MIN 0
An integer value between -32 768 and 32 767.
typedef int16_t UA_Int16;
#define UA_INT16_MAX 32767
#define UA_INT16_MIN (-32768)
An integer value between 0 and 65 535.
typedef uint16_t UA_UInt16;
#define UA_UINT16_MAX 65535
#define UA_UINT16_MIN 0
An integer value between -2 147 483 648 and 2 147 483 647.
typedef int32_t UA_Int32;
#define UA_INT32_MAX 2147483647
#define UA_INT32_MIN (-2147483648)
An integer value between 0 and 4 294 967 295.
typedef uint32_t UA_UInt32;
#define UA_UINT32_MAX 4294967295
#define UA_UINT32_MIN 0
An integer value between -10 223 372 036 854 775 808 and 9 223 372 036 854 775 807.
typedef int64_t UA_Int64;
#define UA_INT64_MAX (int64_t)9223372036854775807
#define UA_INT64_MIN ((int64_t)-9223372036854775808)
An integer value between 0 and 18 446 744 073 709 551 615.
typedef uint64_t UA_UInt64;
#define UA_UINT64_MAX (int64_t)18446744073709551615
#define UA_UINT64_MIN (int64_t)0
An IEEE single precision (32 bit) floating point value.
typedef float UA_Float;
An IEEE double precision (64 bit) floating point value.
typedef double UA_Double;
A numeric identifier for a error or condition that is associated with a value or an operation.
typedef uint32_t UA_StatusCode;
In OPC UA, arrays can have a length of zero or more with the usual meaning. In addition, arrays can be undefined. Then, they don't even have a length. In the binary encoding, this is indicated by an array of length -1.
In open62541 however, we use size_t
for array lengths. An undefined array
has length 0 and the data pointer is NULL. An array of length 0 also has
length 0 but points to a sentinel memory address.
#define UA_EMPTY_ARRAY_SENTINEL ((void*)0x01)
#define MAX_ARRAY_SIZE 104857600 // arrays must be smaller than 100MB
Forward Declaration of UA_DataType. See Section Generic Type Handling
struct UA_DataType;
typedef struct UA_DataType UA_DataType;
The following functions are used for handling arrays of an data type.
/* Allocates and initializes an array of variables of a specific type
* @param size The requested array length
* @param type The datatype description
* @return Returns the memory location of the variable or (void*)0 if no memory
could be allocated */
void * UA_Array_new(size_t size, const UA_DataType *type);
/* Allocates and copies an array
* @param src The memory location of the source array
* @param size The size of the array
* @param dst The location of the pointer to the new array
* @param type The datatype of the array members
* @return Returns UA_STATUSCODE_GOOD or UA_STATUSCODE_BADOUTOFMEMORY */
UA_StatusCode UA_Array_copy(const void *src, size_t size, void **dst, const UA_DataType *type);
/* Deletes an array.
* @param p The memory location of the array
* @param size The size of the array
* @param type The datatype of the array members */
void UA_Array_delete(void *p, size_t size, const UA_DataType *type);
A sequence of Unicode characters. Strings are just an array of UA_Byte.
typedef struct {
size_t length; /* The length of the string */
UA_Byte *data; /* The content (not null-terminated) */
} UA_String;
/* Copies the content on the heap. Returns a null-string when alloc fails */
UA_String UA_String_fromChars(char const src[]);
UA_Boolean UA_String_equal(const UA_String *s1, const UA_String *s2);
extern const UA_String UA_STRING_NULL;
UA_STRING
returns a string pointing to the preallocated char-array.
UA_STRING_ALLOC
is shorthand for UA_String_fromChars
and makes a copy
of the char-array.
static UA_INLINE UA_String UA_STRING(char *chars) {
UA_String str; str.length = strlen(chars);
str.data = (UA_Byte*)chars; return str; }
#define UA_STRING_ALLOC(CHARS) UA_String_fromChars(CHARS)
An instance in time. A DateTime value is encoded as a 64-bit signed integer which represents the number of 100 nanosecond intervals since January 1, 1601 (UTC).
typedef int64_t UA_DateTime;
/* Multiply to convert units for time difference computations */
#define UA_USEC_TO_DATETIME 10LL
#define UA_MSEC_TO_DATETIME (UA_USEC_TO_DATETIME * 1000LL)
#define UA_SEC_TO_DATETIME (UA_MSEC_TO_DATETIME * 1000LL)
/* Datetime of 1 Jan 1970 00:00 UTC */
#define UA_DATETIME_UNIX_EPOCH (11644473600LL * UA_SEC_TO_DATETIME)
/* The current time */
UA_DateTime UA_DateTime_now(void);
/* CPU clock invariant to system time changes. Use only for time diffs, not current time */
UA_DateTime UA_DateTime_nowMonotonic(void);
typedef struct UA_DateTimeStruct {
UA_UInt16 nanoSec;
UA_UInt16 microSec;
UA_UInt16 milliSec;
UA_UInt16 sec;
UA_UInt16 min;
UA_UInt16 hour;
UA_UInt16 day;
UA_UInt16 month;
UA_UInt16 year;
} UA_DateTimeStruct;
UA_DateTimeStruct UA_DateTime_toStruct(UA_DateTime t);
UA_String UA_DateTime_toString(UA_DateTime t);
A 16 byte value that can be used as a globally unique identifier.
typedef struct {
UA_UInt32 data1;
UA_UInt16 data2;
UA_UInt16 data3;
UA_Byte data4[8];
} UA_Guid;
UA_Boolean UA_Guid_equal(const UA_Guid *g1, const UA_Guid *g2);
/* do not use for cryptographic entropy */
UA_Guid UA_Guid_random(void);
A sequence of octets.
typedef UA_String UA_ByteString;
static UA_INLINE UA_Boolean
UA_ByteString_equal(const UA_ByteString *string1, const UA_ByteString *string2) {
return UA_String_equal((const UA_String*)string1, (const UA_String*)string2); }
/* Allocates memory of size length for the bytestring. The content is not set to zero. */
UA_StatusCode UA_ByteString_allocBuffer(UA_ByteString *bs, size_t length);
extern const UA_ByteString UA_BYTESTRING_NULL;
static UA_INLINE UA_ByteString UA_BYTESTRING(char *chars) {
UA_ByteString str; str.length = strlen(chars); str.data = (UA_Byte*)chars; return str; }
static UA_INLINE UA_ByteString UA_BYTESTRING_ALLOC(const char *chars) {
UA_String str = UA_String_fromChars(chars); UA_ByteString bstr;
bstr.length = str.length; bstr.data = str.data; return bstr;
}
An XML element.
typedef UA_String UA_XmlElement;
An identifier for a node in the address space of an OPC UA Server.
enum UA_NodeIdType {
UA_NODEIDTYPE_NUMERIC = 0, /* In the binary encoding, this can become 0
or 1 for 2byte and 4byte encoding of small
nodeids. */
UA_NODEIDTYPE_STRING = 3,
UA_NODEIDTYPE_GUID = 4,
UA_NODEIDTYPE_BYTESTRING = 5
};
typedef struct {
UA_UInt16 namespaceIndex;
enum UA_NodeIdType identifierType;
union {
UA_UInt32 numeric;
UA_String string;
UA_Guid guid;
UA_ByteString byteString;
} identifier;
} UA_NodeId;
extern const UA_NodeId UA_NODEID_NULL;
static UA_INLINE UA_Boolean UA_NodeId_isNull(const UA_NodeId *p) {
return (p->namespaceIndex == 0 && p->identifierType == UA_NODEIDTYPE_NUMERIC &&
p->identifier.numeric == 0);
}
UA_Boolean UA_NodeId_equal(const UA_NodeId *n1, const UA_NodeId *n2);
The following functions are shorthand for creating NodeIds.
static UA_INLINE UA_NodeId UA_NODEID_NUMERIC(UA_UInt16 nsIndex, UA_UInt32 identifier) {
UA_NodeId id; id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_NUMERIC;
id.identifier.numeric = identifier; return id; }
static UA_INLINE UA_NodeId UA_NODEID_STRING(UA_UInt16 nsIndex, char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_STRING;
id.identifier.string = UA_STRING(chars); return id; }
static UA_INLINE UA_NodeId UA_NODEID_STRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_STRING;
id.identifier.string = UA_STRING_ALLOC(chars); return id; }
static UA_INLINE UA_NodeId UA_NODEID_GUID(UA_UInt16 nsIndex, UA_Guid guid) {
UA_NodeId id; id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_GUID;
id.identifier.guid = guid; return id; }
static UA_INLINE UA_NodeId UA_NODEID_BYTESTRING(UA_UInt16 nsIndex, char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_BYTESTRING;
id.identifier.byteString = UA_BYTESTRING(chars); return id; }
static UA_INLINE UA_NodeId UA_NODEID_BYTESTRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_BYTESTRING;
id.identifier.byteString = UA_BYTESTRING_ALLOC(chars); return id; }
A NodeId that allows the namespace URI to be specified instead of an index.
typedef struct {
UA_NodeId nodeId;
UA_String namespaceUri;
UA_UInt32 serverIndex;
} UA_ExpandedNodeId;
The following functions are shorthand for creating ExpandedNodeIds.
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_NUMERIC(UA_UInt16 nsIndex, UA_UInt32 identifier) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_NUMERIC(nsIndex, identifier);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_STRING(UA_UInt16 nsIndex, char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_STRING(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_STRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_STRING_ALLOC(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_STRING_GUID(UA_UInt16 nsIndex, UA_Guid guid) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_GUID(nsIndex, guid);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_BYTESTRING(UA_UInt16 nsIndex, char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_BYTESTRING(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_BYTESTRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_BYTESTRING_ALLOC(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }
A name qualified by a namespace.
typedef struct {
UA_UInt16 namespaceIndex;
UA_String name;
} UA_QualifiedName;
static UA_INLINE UA_QualifiedName
UA_QUALIFIEDNAME(UA_UInt16 nsIndex, char *chars) {
UA_QualifiedName qn; qn.namespaceIndex = nsIndex;
qn.name = UA_STRING(chars); return qn; }
static UA_INLINE UA_QualifiedName
UA_QUALIFIEDNAME_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_QualifiedName qn; qn.namespaceIndex = nsIndex;
qn.name = UA_STRING_ALLOC(chars); return qn; }
Human readable text with an optional locale identifier.
typedef struct {
UA_String locale;
UA_String text;
} UA_LocalizedText;
static UA_INLINE UA_LocalizedText
UA_LOCALIZEDTEXT(char *locale, char *text) {
UA_LocalizedText lt; lt.locale = UA_STRING(locale);
lt.text = UA_STRING(text); return lt; }
static UA_INLINE UA_LocalizedText
UA_LOCALIZEDTEXT_ALLOC(const char *locale, const char *text) {
UA_LocalizedText lt; lt.locale = UA_STRING_ALLOC(locale);
lt.text = UA_STRING_ALLOC(text); return lt; }
ExtensionObjects may contain scalars of any data type. Even those that are unknown to the receiver. See the Section Generic Type Handling on how types are described. An ExtensionObject always contains the NodeId of the Data Type. If the data cannot be decoded, we keep the encoded string and the NodeId.
typedef struct {
enum {
UA_EXTENSIONOBJECT_ENCODED_NOBODY = 0,
UA_EXTENSIONOBJECT_ENCODED_BYTESTRING = 1,
UA_EXTENSIONOBJECT_ENCODED_XML = 2,
UA_EXTENSIONOBJECT_DECODED = 3,
UA_EXTENSIONOBJECT_DECODED_NODELETE = 4 /* Don't delete the decoded content
at the lifecycle end */
} encoding;
union {
struct {
UA_NodeId typeId; /* The nodeid of the datatype */
UA_ByteString body; /* The bytestring of the encoded data */
} encoded;
struct {
const UA_DataType *type;
void *data;
} decoded;
} content;
} UA_ExtensionObject;
Variants may contain data of any type. See the Section Generic Type Handling on how types are described. If the data is not of one of the 25 builtin types, it will be encoded as an ExtensionObject on the wire. (The standard says that a variant is a union of the built-in types. open62541 generalizes this to any data type by transparently de- and encoding ExtensionObjects in the background. If the decoding fails, the variant contains the original ExtensionObject.)
Variants can contain a single scalar or an array. For details on the handling of arrays, see the Section Array Handling. Array variants can have an additional dimensionality (matrix, 3-tensor, ...) defined in an array of dimension sizes. Higher rank dimensions are serialized first.
The differentiation between variants containing a scalar, an array or no data is as follows:
- arrayLength == 0 && data == NULL: no existing data
- arrayLength == 0 && data == UA_EMPTY_ARRAY_SENTINEL: array of length 0
- arrayLength == 0 && data > UA_EMPTY_ARRAY_SENTINEL: scalar value
- arrayLength > 0: array of the given length
typedef struct {
const UA_DataType *type; /* The data type description */
enum {
UA_VARIANT_DATA, /* The data has the same lifecycle as the variant */
UA_VARIANT_DATA_NODELETE, /* The data is "borrowed" by the variant and shall not be
deleted at the end of the variant's lifecycle. */
} storageType;
size_t arrayLength; // The number of elements in the data array
void *data; // Points to the scalar or array data
size_t arrayDimensionsSize; // The number of dimensions the data-array has
UA_UInt32 *arrayDimensions; // The length of each dimension of the data-array
} UA_Variant;
/* Returns true if the variant contains a scalar value. Note that empty variants
* contain an array of length -1 (undefined).
* @param v The variant
* @return Does the variant contain a scalar value. */
static UA_INLINE UA_Boolean UA_Variant_isScalar(const UA_Variant *v) {
return (v->arrayLength == 0 && v->data > UA_EMPTY_ARRAY_SENTINEL); }
/* Set the variant to a scalar value that already resides in memory. The value
* takes on the lifecycle of the variant and is deleted with it.
* @param v The variant
* @param p A pointer to the value data
* @param type The datatype of the value in question */
void
UA_Variant_setScalar(UA_Variant *v, void * UA_RESTRICT p, const UA_DataType *type);
/* Set the variant to a scalar value that is copied from an existing variable.
* @param v The variant
* @param p A pointer to the value data
* @param type The datatype of the value
* @return Indicates whether the operation succeeded or returns an error code */
UA_StatusCode
UA_Variant_setScalarCopy(UA_Variant *v, const void *p, const UA_DataType *type);
/* Set the variant to an array that already resides in memory. The array takes
* on the lifecycle of the variant and is deleted with it.
* @param v The variant
* @param array A pointer to the array data
* @param arraySize The size of the array
* @param type The datatype of the array */
void
UA_Variant_setArray(UA_Variant *v, void * UA_RESTRICT array,
size_t arraySize, const UA_DataType *type);
/* Set the variant to an array that is copied from an existing array.
* @param v The variant
* @param array A pointer to the array data
* @param arraySize The size of the array
* @param type The datatype of the array
* @return Indicates whether the operation succeeded or returns an error code */
UA_StatusCode
UA_Variant_setArrayCopy(UA_Variant *v, const void *array,
size_t arraySize, const UA_DataType *type);
NumericRanges are used to indicate subsets of a (multidimensional) variant array. NumericRange has no official type structure in the standard. On the wire, it only exists as an encoded string, such as "1:2,0:3,5". The colon separates min/max index and the comma separates dimensions. A single value indicates a range with a single element (min==max).
typedef struct {
size_t dimensionsSize;
struct UA_NumericRangeDimension {
UA_UInt32 min;
UA_UInt32 max;
} *dimensions;
} UA_NumericRange;
/* Copy the variant, but use only a subset of the (multidimensional) array into a variant. Returns
* an error code if the variant is not an array or if the indicated range does not fit.
* @param src The source variant
* @param dst The target variant
* @param range The range of the copied data
* @return Returns UA_STATUSCODE_GOOD or an error code */
UA_StatusCode
UA_Variant_copyRange(const UA_Variant *src, UA_Variant *dst, const UA_NumericRange range);
/* Insert a range of data into an existing variant. The data array can't be reused afterwards if it
* contains types without a fixed size (e.g. strings) since the members are moved into the variant
* and take on its lifecycle.
*
* @param v The variant
* @param dataArray The data array. The type must match the variant
* @param dataArraySize The length of the data array. This is checked to match the range size.
* @param range The range of where the new data is inserted
* @return Returns UA_STATUSCODE_GOOD or an error code */
UA_StatusCode
UA_Variant_setRange(UA_Variant *v, void * UA_RESTRICT array,
size_t arraySize, const UA_NumericRange range);
/* Deep-copy a range of data into an existing variant.
*
* @param v The variant
* @param dataArray The data array. The type must match the variant
* @param dataArraySize The length of the data array. This is checked to match the range size.
* @param range The range of where the new data is inserted
* @return Returns UA_STATUSCODE_GOOD or an error code */
UA_StatusCode
UA_Variant_setRangeCopy(UA_Variant *v, const void *array,
size_t arraySize, const UA_NumericRange range);
A data value with an associated status code and timestamps.
typedef struct {
UA_Boolean hasValue : 1;
UA_Boolean hasStatus : 1;
UA_Boolean hasSourceTimestamp : 1;
UA_Boolean hasServerTimestamp : 1;
UA_Boolean hasSourcePicoseconds : 1;
UA_Boolean hasServerPicoseconds : 1;
UA_Variant value;
UA_StatusCode status;
UA_DateTime sourceTimestamp;
UA_UInt16 sourcePicoseconds;
UA_DateTime serverTimestamp;
UA_UInt16 serverPicoseconds;
} UA_DataValue;
A structure that contains detailed error and diagnostic information associated with a StatusCode.
typedef struct UA_DiagnosticInfo {
UA_Boolean hasSymbolicId : 1;
UA_Boolean hasNamespaceUri : 1;
UA_Boolean hasLocalizedText : 1;
UA_Boolean hasLocale : 1;
UA_Boolean hasAdditionalInfo : 1;
UA_Boolean hasInnerStatusCode : 1;
UA_Boolean hasInnerDiagnosticInfo : 1;
UA_Int32 symbolicId;
UA_Int32 namespaceUri;
UA_Int32 localizedText;
UA_Int32 locale;
UA_String additionalInfo;
UA_StatusCode innerStatusCode;
struct UA_DiagnosticInfo *innerDiagnosticInfo;
} UA_DiagnosticInfo;
The builtin types can be combined to data structures. All information about a
(structured) data type is stored in a UA_DataType
. The array UA_TYPES
contains the description of all standard-defined types and is used for
handling of generic types.
typedef struct {
#ifdef UA_ENABLE_TYPENAMES
const char *memberName;
#endif
UA_UInt16 memberTypeIndex; /* Index of the member in the array of data types */
UA_Byte padding; /* How much padding is there before this member
element? For arrays this is the padding before the
size_t lenght member. (No padding between size_t and
the following ptr.) */
UA_Boolean namespaceZero : 1; /* The type of the member is defined in namespace zero.
In this implementation, types from custom namespace
may contain members from the same namespace or ns0
only.*/
UA_Boolean isArray : 1; /* The member is an array */
} UA_DataTypeMember;
struct UA_DataType {
#ifdef UA_ENABLE_TYPENAMES
const char *typeName;
#endif
UA_NodeId typeId; /* The nodeid of the type */
UA_UInt16 memSize; /* Size of the struct in memory */
UA_UInt16 typeIndex; /* Index of the type in the datatypetable */
UA_Byte membersSize; /* How many members does the type have? */
UA_Boolean builtin : 1; /* The type is "builtin" and has dedicated de- and
encoding functions */
UA_Boolean fixedSize : 1; /* The type (and its members) contains no pointers */
UA_Boolean zeroCopyable : 1; /* The type can be copied directly off the stream (given
that the endianness matches) */
UA_DataTypeMember *members;
};
The following functions are used for generic handling of data types.
/* Allocates and initializes a variable of type dataType
*
* @param type The datatype description
* @return Returns the memory location of the variable or (void*)0 if no memory is available */
void * UA_new(const UA_DataType *type);
/* Initializes a variable to default values
*
* @param p The memory location of the variable
* @param type The datatype description */
static UA_INLINE void
UA_init(void *p, const UA_DataType *type) { memset(p, 0, type->memSize); }
/* Copies the content of two variables. If copying fails (e.g. because no memory was
* available for an array), then dst is emptied and initialized to prevent memory leaks.
*
* @param src The memory location of the source variable
* @param dst The memory location of the destination variable
* @param type The datatype description
* @return Indicates whether the operation succeeded or returns an error code */
UA_StatusCode UA_copy(const void *src, void *dst, const UA_DataType *type);
/* Deletes the dynamically allocated content of a variable (e.g. resets all arrays to
* undefined arrays). Afterwards, the variable can be safely deleted without causing
* memory leaks. But the variable is not initialized and may contain old data that is not
* memory-relevant.
*
* @param p The memory location of the variable
* @param type The datatype description of the variable */
void UA_deleteMembers(void *p, const UA_DataType *type);
/* Frees a variable and all of its content.
*
* @param p The memory location of the variable
* @param type The datatype description of the variable */
void UA_delete(void *p, const UA_DataType *type);
These are not generated from XML. Server and client need them.
typedef enum {
UA_ATTRIBUTEID_NODEID = 1,
UA_ATTRIBUTEID_NODECLASS = 2,
UA_ATTRIBUTEID_BROWSENAME = 3,
UA_ATTRIBUTEID_DISPLAYNAME = 4,
UA_ATTRIBUTEID_DESCRIPTION = 5,
UA_ATTRIBUTEID_WRITEMASK = 6,
UA_ATTRIBUTEID_USERWRITEMASK = 7,
UA_ATTRIBUTEID_ISABSTRACT = 8,
UA_ATTRIBUTEID_SYMMETRIC = 9,
UA_ATTRIBUTEID_INVERSENAME = 10,
UA_ATTRIBUTEID_CONTAINSNOLOOPS = 11,
UA_ATTRIBUTEID_EVENTNOTIFIER = 12,
UA_ATTRIBUTEID_VALUE = 13,
UA_ATTRIBUTEID_DATATYPE = 14,
UA_ATTRIBUTEID_VALUERANK = 15,
UA_ATTRIBUTEID_ARRAYDIMENSIONS = 16,
UA_ATTRIBUTEID_ACCESSLEVEL = 17,
UA_ATTRIBUTEID_USERACCESSLEVEL = 18,
UA_ATTRIBUTEID_MINIMUMSAMPLINGINTERVAL = 19,
UA_ATTRIBUTEID_HISTORIZING = 20,
UA_ATTRIBUTEID_EXECUTABLE = 21,
UA_ATTRIBUTEID_USEREXECUTABLE = 22
} UA_AttributeId;
typedef enum {
UA_ACCESSLEVELMASK_READ = 0x01,
UA_ACCESSLEVELMASK_WRITE = 0x02,
UA_ACCESSLEVELMASK_HISTORYREAD = 0x4,
UA_ACCESSLEVELMASK_HISTORYWRITE = 0x08,
UA_ACCESSLEVELMASK_SEMANTICCHANGE = 0x10
} UA_AccessLevelMask;
If UA_ENABLE_MULTITHREADING is defined, then the seed is stored in thread local storage. The seed is initialized for every thread in the server/client.
void UA_random_seed(UA_UInt64 seed);
UA_UInt32 UA_UInt32_random(void); /* do not use for cryptographic entropy */