Skip to content

Instantly share code, notes, and snippets.

@jplindgren
Forked from Avaq/combinators.js
Created October 24, 2021 15:10
Show Gist options
  • Save jplindgren/71b2ed83d9313ded90768bf4d8b6445d to your computer and use it in GitHub Desktop.
Save jplindgren/71b2ed83d9313ded90768bf4d8b6445d to your computer and use it in GitHub Desktop.
Common combinators in JavaScript
const I = x => x
const K = x => y => x
const A = f => x => f (x)
const T = x => f => f (x)
const W = f => x => f (x) (x)
const C = f => y => x => f (x) (y)
const B = f => g => x => f (g (x))
const S = f => g => x => f (x) (g (x))
const S_ = f => g => x => f (g (x)) (x)
const S2 = f => g => h => x => f (g (x)) (h (x))
const P = f => g => x => y => f (g (x)) (g (y))
const Y = f => (g => g (g)) (g => f (x => g (g) (x)))
Name # Haskell Ramda Sanctuary Signature
identity I id identity I a → a
constant K const always K a → b → a
apply A ($) call I¹ (a → b) → a → b
thrush T (&) applyTo T a → (a → b) → b
duplication W join² unnest² join² (a → a → b) → a → b
flip C flip flip flip (a → b → c) → b → a → c
compose B (.), fmap² map² compose, map² (b → c) → (a → b) → a → c
substitution S (<*>)² ap² ap² (a → b → c) → (a → b) → a → c
chain S_³ (=<<)² chain² chain² (a → b → c) → (b → a) → b → c
converge S2³ apply2way, liftA2², liftM2² lift2² (b → c → d) → (a → b) → (a → c) → a → d
psi P on on (b → b → c) → (a → b) → a → a → c
fix-point4 Y fix (a → a) → a

¹) The A-combinator can be implemented as an alias of the I-combinator. Its implementation in Haskell exists because the infix nature gives it some utility. Its implementation in Ramda exists because it is overloaded with additional functionality.

²) Algebras like ap have different implementations for different types. They work like Function combinators only for Function inputs.

³) I could not find a consistent name for these combinators, but they are common enough in the JavaScript ecosystem to justify their inclusion. I named them myself in order to refer to their implementation.

4) In JavaScript and other non-lazy languages, it is impossible to implement the Y-combinator. Instead a variant known as the applicative or strict fix-point combinator is implemented. This variant is sometimes rererred to as the Z-combinator. The implementation found in combinators.js is the strictly evaluated "Z" combinator, which needs the extra wrapper around g (g) on the right hand side.

Note that when I use the word "combinator" in this context, it implies "function combinator in the untyped lambda calculus".

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment