Last active
October 2, 2019 20:28
-
-
Save jpo/b16632a28ecf299d17c0d9532750f0de to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class Perceptron(object): | |
"""Perceptron classifier | |
Parameters | |
---------- | |
eta : float | |
Learning rate (between 0.0 and 1.0) | |
n_iter : int | |
Passes over the training dataset. | |
Attributes | |
---------- | |
w_ : 1d-array | |
Weights after fitting. | |
errors_ : list | |
Number of misclassifications in every epoch. | |
""" | |
def __init__(self, eta=0.01, n_iter=10): | |
self.eta = eta | |
self.n_iter = n_iter | |
def fit(self, X, y): | |
"""Fit training data. | |
Parameters | |
---------- | |
X : {array-like}, shape = [n_samples, n_features] | |
Training vectors, where n_samples is the number of samples and | |
n_features is the number of features. | |
y : array-like, shape = [n_samples] | |
Target values. | |
Returns | |
------- | |
self : object | |
""" | |
self.w_ = np.zeros(1 + X.shape[1]) | |
self.errors_ = [] | |
for _ in range(self.n_iter): | |
errors = 0 | |
for xi, target in zip(X, y): | |
update = self.eta * (target - self.predict(xi)) | |
self.w_[1:] += update * xi | |
self.w_[0] += update | |
errors += int(update != 0.0) | |
self.errors_.append(errors) | |
return self | |
def net_input(self, X): | |
"""Calculate net input""" | |
return np.dot(X, self.w_[1:]) + self.w_[0] | |
def predict(self, X): | |
"""Return class label after unit step""" | |
return np.where(self.net_input(X) >= 0.0, 1, -1) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from perceptron import Perceptron | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
df = pd.read_csv('https://archive.ics.uci.edu/ml/' | |
'machine-learning-databases/iris/iris.data', header=None) | |
df.tail() | |
y = df.iloc[0:100, 4].values | |
y = np.where(y == 'Iris-setosa', -1, 1) | |
X = df.iloc[0:100, [0, 2]].values | |
plt.scatter(X[:50, 0], X[:50, 1], | |
color='red', marker='o', label='setosa') | |
plt.scatter(X[50:100, 0], X[50:100, 1], | |
color='blue', marker='x', label='versicolor') | |
plt.xlabel('petal length') | |
plt.ylabel('sepal length') | |
plt.legend(loc='upper left') | |
plt.show() | |
ppn = Perceptron(eta=0.1, n_iter=10) | |
ppn.fit(X, y) | |
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o') | |
plt.xlabel('Epochs') | |
plt.ylabel('Number of misclassifications') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment