Last active
March 27, 2025 09:58
-
-
Save jrosell/62e5706a306af49a9dea8d3a939758e9 to your computer and use it in GitHub Desktop.
An example of data model to perform clickstream data analysis in R for an ecommerce website or app.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
``` r | |
suppressPackageStartupMessages({ | |
library(dplyr) | |
library(tidyr) | |
}) | |
click_data <- tibble( | |
click_id = c("u1", "u1", "u1", "u1", "u1", "u1", "u1", "u1", "u1", "u2", "u2", "u2", "u3", "u3", "u2"), | |
click_name = c("first_click", "page_view", "view_item", "add_to_wishlist", "add_to_cart", "page_view", "begin_checkout", "page_view", "purchase", "first_click", "page_view", "view_item", "first_click", "page_view", "page_view"), | |
click_value = c(0, 0, 0, 1, 2, 0, 4, 0, 20, 0, 0, 0, 0, 0, 0), | |
click_revenue = c(0, 0, 0, 0, 0, 0, 0, 0, 201.2, 0, 0, 0, 0, 0, 0), | |
page_referrer = c("document.referrer"), | |
page_location = c("window.location.href"), | |
utm_source = "", | |
utm_medium = "", | |
utm_campaign = "", | |
utm_content = "", | |
utm_term = "", | |
country = "", | |
device_category = "", | |
device_os = "", | |
timestamp = Sys.time() | |
) | |
click_data | |
#> # A tibble: 15 × 15 | |
#> click_id click_name click_value click_revenue page_referrer page_location | |
#> <chr> <chr> <dbl> <dbl> <chr> <chr> | |
#> 1 u1 first_click 0 0 document.ref… window.locat… | |
#> 2 u1 page_view 0 0 document.ref… window.locat… | |
#> 3 u1 view_item 0 0 document.ref… window.locat… | |
#> 4 u1 add_to_wishli… 1 0 document.ref… window.locat… | |
#> 5 u1 add_to_cart 2 0 document.ref… window.locat… | |
#> 6 u1 page_view 0 0 document.ref… window.locat… | |
#> 7 u1 begin_checkout 4 0 document.ref… window.locat… | |
#> 8 u1 page_view 0 0 document.ref… window.locat… | |
#> 9 u1 purchase 20 201. document.ref… window.locat… | |
#> 10 u2 first_click 0 0 document.ref… window.locat… | |
#> 11 u2 page_view 0 0 document.ref… window.locat… | |
#> 12 u2 view_item 0 0 document.ref… window.locat… | |
#> 13 u3 first_click 0 0 document.ref… window.locat… | |
#> 14 u3 page_view 0 0 document.ref… window.locat… | |
#> 15 u2 page_view 0 0 document.ref… window.locat… | |
#> # ℹ 9 more variables: utm_source <chr>, utm_medium <chr>, utm_campaign <chr>, | |
#> # utm_content <chr>, utm_term <chr>, country <chr>, device_category <chr>, | |
#> # device_os <chr>, timestamp <dttm> | |
click_data |> summarise(entrances = n_distinct(click_id)) | |
#> # A tibble: 1 × 1 | |
#> entrances | |
#> <int> | |
#> 1 3 | |
click_data |> summarise(.by = click_name, event_count = n()) | |
#> # A tibble: 7 × 2 | |
#> click_name event_count | |
#> <chr> <int> | |
#> 1 first_click 3 | |
#> 2 page_view 6 | |
#> 3 view_item 2 | |
#> 4 add_to_wishlist 1 | |
#> 5 add_to_cart 1 | |
#> 6 begin_checkout 1 | |
#> 7 purchase 1 | |
click_data |> | |
rename(name = click_name) |> | |
summarise(.by = c(name), value = n()) |> | |
pivot_wider(values_fill = 0) | |
#> # A tibble: 1 × 7 | |
#> first_click page_view view_item add_to_wishlist add_to_cart begin_checkout | |
#> <int> <int> <int> <int> <int> <int> | |
#> 1 3 6 2 1 1 1 | |
#> # ℹ 1 more variable: purchase <int> | |
click_data |> | |
rename(name = click_name) |> | |
summarise(.by = c(click_id, name), value = n()) |> | |
group_by(click_id) |> | |
pivot_wider(values_fill = 0) | |
#> # A tibble: 3 × 8 | |
#> # Groups: click_id [3] | |
#> click_id first_click page_view view_item add_to_wishlist add_to_cart | |
#> <chr> <int> <int> <int> <int> <int> | |
#> 1 u1 1 3 1 1 1 | |
#> 2 u2 1 2 1 0 0 | |
#> 3 u3 1 1 0 0 0 | |
#> # ℹ 2 more variables: begin_checkout <int>, purchase <int> | |
``` | |
<sup>Created on 2025-03-27 with [reprex v2.1.1](https://reprex.tidyverse.org)</sup> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment