-
-
Save jrumbut/3eb4b65dc64521359e3282160ac84ea5 to your computer and use it in GitHub Desktop.
Neural network (nnet) with caret and R. Machine learning classification example, includes parallel processing.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(caret) | |
library(doParallel) | |
registerDoParallel(cores = 2) | |
# Read data. | |
data <- read.csv('train.csv') | |
test <- read.csv('test.csv') | |
# Set classification column to factor. | |
y <- as.factor(make.names(data$TARGET)) | |
# Remove columns with near zero variance. | |
nzv <- nearZeroVar(data) | |
data <- data[,-nzv] | |
test <- test[,-nzv] | |
data$TARGET <- y | |
##### Removing constant features | |
cat("\n## Removing the constants features.\n") | |
for (f in names(data)) { | |
if (length(unique(data[[f]])) == 1) { | |
cat(f, "is constant in train. We delete it.\n") | |
data[[f]] <- NULL | |
test[[f]] <- NULL | |
} | |
} | |
##### Removing identical features | |
features_pair <- combn(names(data), 2, simplify = F) | |
toRemove <- c() | |
for(pair in features_pair) { | |
f1 <- pair[1] | |
f2 <- pair[2] | |
if (!(f1 %in% toRemove) & !(f2 %in% toRemove)) { | |
if (all(data[[f1]] == data[[f2]])) { | |
cat(f1, "and", f2, "are equals.\n") | |
toRemove <- c(toRemove, f2) | |
} | |
} | |
} | |
feature.names <- setdiff(names(data), toRemove) | |
data <- data[, feature.names] | |
test <- test[, feature.names[feature.names != 'TARGET']] | |
inTrain <- createDataPartition(data$TARGET, p = 3/4)[[1]] | |
training <- data[inTrain,] | |
testing <- data[-inTrain,] | |
# Train on entire training set. | |
# training <- data | |
numFolds <- trainControl(method = 'cv', number = 10, classProbs = TRUE, verboseIter = TRUE, summaryFunction = twoClassSummary, preProcOptions = list(thresh = 0.75, ICAcomp = 3, k = 5)) | |
fit2 <- train(TARGET ~ . -TARGET -ID, data = training, method = 'nnet', preProcess = c('center', 'scale'), trControl = numFolds, tuneGrid=expand.grid(size=c(10), decay=c(0.1))) | |
results1 <- predict(fit2, newdata=training) | |
conf1 <- confusionMatrix(results1, training$TARGET) | |
results2 <- predict(fit2, newdata=testing) | |
conf2 <- confusionMatrix(results2, testing$TARGET) | |
probs <- predict(fit2, newdata=test, type='prob') | |
# Assemble output format: ID, prob. | |
output <- data.frame(ID=test$ID) | |
output <- cbind(output, TARGET=probs$X1) | |
write.csv(output, file='output.csv', row.names=FALSE, quote=FALSE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment