This block is an extension of the Scatterplot Block with a regression line fit to the data. The data is randomly generated using the create_data function.
forked from ctufts's block: D3 Scatterplot with Regression Line
license: gpl-3.0 | |
height: 500 | |
scrolling: no | |
border: no |
This block is an extension of the Scatterplot Block with a regression line fit to the data. The data is randomly generated using the create_data function.
forked from ctufts's block: D3 Scatterplot with Regression Line
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<title>D3 Scatterplot with Regression Line</title> | |
<style> | |
.line { | |
stroke: #E4002B; | |
fill: none; | |
stroke-width: 2; | |
} | |
.axis path, | |
.axis line { | |
fill: none; | |
stroke: black; | |
shape-rendering: crispEdges; | |
} | |
.axis text { | |
font-size: 10px; | |
font-family: sans-serif; | |
} | |
.text-label { | |
font-size: 10px; | |
font-family: sans-serif; | |
} | |
.dot { | |
stroke: #293b47; | |
fill: #7A99AC | |
} | |
</style> | |
<body> | |
<script src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.6/d3.min.js"></script> | |
<script> | |
var margin = { | |
top: 20, | |
right: 20, | |
bottom: 30, | |
left: 40 | |
}, | |
width = 600 - margin.left - margin.right, | |
height = 400 - margin.top - margin.bottom; | |
var x = d3.scale.linear() | |
.range([0, width]); | |
var y = d3.scale.linear() | |
.range([height, 0]); | |
var xAxis = d3.svg.axis() | |
.scale(x) | |
.orient("bottom"); | |
var yAxis = d3.svg.axis() | |
.scale(y) | |
.orient("left"); | |
var svg = d3.select("body").append("svg") | |
.attr("width", width + margin.left + margin.right) | |
.attr("height", height + margin.top + margin.bottom) | |
.append("g") | |
.attr("transform", "translate(" + margin.left + "," + margin.top + ")"); | |
var x1 = [405,905,1819,2029,1830,2250,5633,36008,22129,4486,5233,22027,8221,1970,2107] | |
var y1 = [473,971,1688,2063,1921,2281,5391,35646,24084,5379,7440,24488,10462,1407,1504] | |
var data = create_data(x1,y1); | |
data.forEach(function(d) { | |
d.x = +d.x; | |
d.y = +d.y; | |
d.yhat = +d.yhat; | |
}); | |
var line = d3.svg.line() | |
.x(function(d) { | |
return x(d.x); | |
}) | |
.y(function(d) { | |
return y(d.yhat); | |
}); | |
x.domain(d3.extent(data, function(d) { | |
return d.x; | |
})); | |
y.domain(d3.extent(data, function(d) { | |
return d.y; | |
})); | |
svg.append("g") | |
.attr("class", "x axis") | |
.attr("transform", "translate(0," + height + ")") | |
.call(xAxis) | |
.append("text") | |
.attr("class", "label") | |
.attr("x", width) | |
.attr("y", -6) | |
.style("text-anchor", "end") | |
.attr("font-weight", "bold") | |
.text("Male"); | |
svg.append("g") | |
.attr("class", "y axis") | |
.call(yAxis) | |
.append("text") | |
.attr("class", "label") | |
.attr("transform", "rotate(-90)") | |
.attr("y", 6) | |
.attr("dy", ".71em") | |
.style("text-anchor", "end") | |
.attr("font-weight", "bold") | |
.text("Female") | |
svg.selectAll(".dot") | |
.data(data) | |
.enter().append("circle") | |
.attr("class", "dot") | |
.attr("r", 3.5) | |
.attr("cx", function(d) { | |
return x(d.x); | |
}) | |
.attr("cy", function(d) { | |
return y(d.y); | |
}); | |
svg.append("path") | |
.datum(data) | |
.attr("class", "line") | |
.attr("d", line); | |
svg.append("text") | |
.attr("x", (width + (margin.left + margin.right) )/ 2-10) | |
.attr("y", 0 + margin.top) | |
.attr("text-anchor", "middle") | |
.style("font-size", "12px") | |
.style("font-family", "sans-serif") | |
.text("education levels correlation between women and men (18+ years old)"); | |
function create_data(x,y) { | |
var n = 15; | |
var x_mean = 0; | |
var y_mean = 0; | |
var term1 = 0; | |
var term2 = 0; | |
// create x and y values | |
for (var i = 0; i < n; i++) { | |
x_mean += x[i] | |
y_mean += y[i] | |
} | |
// calculate mean x and y | |
x_mean /= n; | |
y_mean /= n; | |
// calculate coefficients | |
var xr = 0; | |
var yr = 0; | |
for (i = 0; i < x.length; i++) { | |
xr = x[i] - x_mean; | |
yr = y[i] - y_mean; | |
term1 += xr * yr; | |
term2 += xr * xr; | |
} | |
var b1 = term1 / term2; | |
var b0 = y_mean - (b1 * x_mean); | |
// perform regression | |
yhat = []; | |
// fit line using coeffs | |
for (i = 0; i < x.length; i++) { | |
yhat.push(b0 + (x[i] * b1)); | |
} | |
var data = []; | |
for (i = 0; i < y.length; i++) { | |
data.push({ | |
"yhat": yhat[i], | |
"y": y[i], | |
"x": x[i] | |
}) | |
} | |
return (data); | |
} | |
</script> | |
</body> |