Skip to content

Instantly share code, notes, and snippets.

@jscrane
Created April 16, 2014 09:57
Show Gist options
  • Select an option

  • Save jscrane/10844831 to your computer and use it in GitHub Desktop.

Select an option

Save jscrane/10844831 to your computer and use it in GitHub Desktop.
Probability Cheat Sheet
Counting
------------
**Permutations**
$n! = n(n-1)(n-2) ... 1$
**k-Permutations**
$\frac{n!}{(n-k)!}$
**Combinations**
$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
**Partitions**
$\frac{n!}{\prod_{i=1}^{r}n_i!}$
Events
----------
$A, B$ are events.
**Conditional Probability**
if $P(B) > 0$, $P(A | B) = \frac{P(A \cap B)}{P(B)}$
**Additivity**
$P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B)$
**Multiplication Rule**
$P(A_1 \cap A_2 \cap A_3) = P(A_1)\,P(A_2 | A_1)\,P(A_3 | A_1 \cap A_2)$
**Total Probability**
if $A_i$ are disjoint and partition the sample space, $P(B) = \sum_i P(A_i \cap B) = \sum_i P(A_i)\,P(B | A_i)$
**Bayes' Rule**
$P(A_i | B) = \frac{P(A_i)P(B | A_i)}{P(B)} = \frac{P(A_i)\,P(B | A_i)}{\sum_i P(A_i)\,p(B | A_i)}$
**Independence**
$
\begin{array}
_P(A \cap B) = P(A)\,P(B)\\
P(A | B) = P(A) & P(B) > 0\\
P(A \cap B | C) = P(A | C)\,P(B | C)\\
P(A | B \cap C) = P(A | C) & P(B \cap C) > 0\\
P(\bigcap_{i \in S} A_i) = \prod_{i=S}P(A_i) & \forall S \subset \{1, 2, ..., n\}
\end{array}$
Discrete Random Variables
-----------------------------
$X, Y$ are discrete RVs, $x, y$ are values.
**Mass Function (PMF) and Cumulative Distribution (CDF)**
$
\begin{array}
_p_X(x) = P(X = x) & (\sum_x P_X(x) = 1)\\
F_X(x) = P(X \le x) = \sum_{k \le x} p_X(k)
\end{array}$
**Joint PMF**
$p_{X,Y}(x,y) = P(X = x, Y = y)$
**Marginals**
$p_X(x) = \sum_y p_{X,Y}(x,y)\\
p_y(y) = \sum_x p_{X,Y}(x,y)$
**Conditional PMF**
$
\begin{array}
_p_{X|A} = P(X = x | A) & (\sum_x P_{X|A}(x) = 1)
\end{array}
$
**Total Probability**
$p_X(x) = \sum_i P(A_i)\,p_{X|A_i}(x)\\
p_{X|B}(x) = \sum_i P(A_i|B)p\,_{X|A_i \cap B}(x)\\
p_{X,Y}(x,y) = p_Y(y)\,p_{X|Y}(x|y)\\
p_X(x) = \sum_y p_Y(y)\,p_{X|Y}(x|y)$
**Bayes' Rule**
$p_{Y|X}(y|x) = \frac{p_Y(y)\,p_{X|Y}(x|y)}{p_X(x)} = \frac{p_Y(y)\,p_{X|Y}(x|y)}{\sum_y p_Y(y)\,p_{X|Y}(x|y)}
$
**Expectation**
$E[X] = \sum_x x\,p_X(x)\\
E[X|A] = \sum_x x\,p_{X|A}(x)\\
E[X|Y] = \sum_x x\,p_{X|Y}(x|y)\\
E[g(X)] = \sum_x g(x)\,p_X(x)\\
E[g(X) | A] = \sum_x g(x)\,p_{X|A}(x)\\
E[g(X)h(Y)] = \sum_x \sum_y g(x)\,h(y)\,p_{X,Y}(x,y)$
**Total Expectation**
$E[X] = \sum_i P(A_i)\,E[X | A_i]\\
E[X | B] = \sum_i P(A_i)\,E[X | A_i \cap B]\\
E[X] = \sum_y p_Y(y)\,E[X | Y=y]$
**Independence**
If $X, Y$ are independent,
$p_{X,Y}(x,y) = p_X(x)\,p_Y(y)\\
p_{X|Y}(x|y) = p_X(x)$
**Bernoulli**
$
p_X(k) =
\begin{cases}
p & k = 1\\
1-p & k = 0
\end{cases}\\
E[X] = p\\
var(X) = p(1-p)
$
**Binomial**
$p_X(k) = P(X = k) = \binom{n}{k}\,p^k\,(1-p)^{n-k}\\
E[X] = np\\
var(X) = np(1-p)$
**Poisson**
$p_X(k) = e^{-\lambda}\frac{\lambda^k}{k!}\\
E[X] = \lambda\\
var(X) = \lambda\\
p_{N_\tau}(k) = P(k, \tau) = e^{-\lambda\tau}\frac{(\lambda\tau)^k}{k!}\\
E[N_\tau] = \lambda\tau\\
var(N_\tau) = \lambda\tau\\
$
**Geometric**
$p_X(k) = (1-p)^{k-1}p\\
E[X] = \frac{1}{p}\\
var(X) = \frac{1-p}{p^2}\\
F_X(x) = \sum_{k=1}^n p\,(1-p)^{k-1} = 1 - (1-p)^n
$
**Uniform**
$p_X(x) =
\begin{cases}
\frac{1}{b-a+1} & x \in a, ..., b\\
0 & o.w.
\end{cases}\\
E[X] = \frac{a+b}{2}\\
var(X) = \frac{(b-a+1)^2-1}{12}$
**Pascal**
$p_{Y_k}(t) = \binom{t-1}{k-1}p^k(1-p)^{t-k}\\
E[Y_k] = k/p\\
var(Y_k) = \frac{k(1-p)}{p^2}
$
Continuous Random Variables
---------------------------
**Density Function (PDF) and Cumulative Distribution (CDF)**
$
\begin{array}
_P(X \in B) = \int_B f_X(x)\,dx & (\int_{-\infty}^{\infty}f_X(x)\,dx = 1)\\
F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)\,dt
\end{array}$
**Joint PDF and CDF**
$
\begin{array}
_P(a \le X \le b, c \le Y \le d) = \int_c^d \int_a^b f_{X,Y}(x,y)\,dx\,dy & (\int_{-\infty}^\infty f_{X,Y}(x,y)\,dx\,dy = 1)\\
F_{X,Y}(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(s,t)\,ds\,dt\\
f_{X,Y}(x,y) = \frac{\delta^2 F_{X,Y}(x,y)}{\delta x \delta y}
\end{array}$
**Marginals**
$f_X(x) = \int_{-\infty}^\infty f_{X,Y}(x,y)\,dy\\
f_Y(y) = \int_{-\infty}^\infty f_{X,Y}(x,y)\,dx
$
**Conditional PDF**
$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
**Total Probability**
$f_X(x) = \int_{-\infty}^\infty f_Y(y)\,f_{X|Y}(x|y)\,dy$
**Bayes' Rule**
$f_{Y|X}(y|x) = \frac{f_Y(y)\,f_{X|Y}(x|y)}{f_X(x)} = \frac{f_Y(y)\,f_{X|Y}(x|y)}{\int_{-\infty}^\infty f_Y(t)\,f_{X|Y}(x|t)\,dt}$
**Expectation**
$
E[X] = \int_{-\infty}^\infty x\,f_X(x)\,dx\\
E[g(X)] = \int_{-\infty}^\infty g(x)\,f_X(x)\,dx\\
E[X | A] = \int_{-\infty}^\infty x\,f_{X|A}(x)\,dx\\
E[g(X) | A] = \int_{-\infty}^\infty g(x)\,f_{X|A}(x)\,dx\\
E[X | Y=y] = \int_{-\infty}^\infty x\,f_{X|Y}(x|y)\,dx\\
E[g(X) | Y=y] = \int_{-\infty}^\infty g(x)\,f_{X|Y}(x|y)\,dx\\
E[g(X,Y) | Y=y] = \int_{-\infty}^\infty g(x,y)\,f_{X|Y}(x|y)\,dx\\
E[g(X,Y)] = \int E[g(X,Y) | Y=y]\,f_Y(y)\,dy\\
E[g(X,Y)] = \int_{-\infty}^\infty \int_{-\infty}^\infty g(x,y)\,f_{X,Y}\,dx\,dy\\
var(X) = \int_{-\infty}^\infty (x - E[X])^2\,f_X(x)\,dx
$
**Total Expectation**
$E[X] = \int_{-\infty}^\infty E[X|Y=y]\,f_Y(y)\,dy$
**Independence**
$
\begin{array}
_f_{X,Y}(x,y) = f_X(x)\,f_Y(y) & \forall x,y
\end{array}$
**Uniform**
$f_X(x) =
\begin{cases}
\frac{1}{b-a} & a \le x \le b\\
0 & o.w.
\end{cases}\\
E[X] = \frac{a+b}{2}\\
var(X) = \frac{(b-a)^2}{12}$
**Exponential**
$f_X(x) =
\begin{cases}
\lambda\,e^{-\lambda\,x} & x \ge 0\\
0 & o.w.
\end{cases}\\
E[X] = \frac{1}{\lambda}\\
var(X) = \frac{1}{\lambda^2}\\
F_X(x) = \int_0^x \lambda\,e^{-\lambda t}\,dt = 1 - e^{-\lambda x}$
**Normal**
$f_X(x) = \mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\,\sigma}\,e^{-\frac{(x-\mu)^2}{2\,\sigma^2}}\\
E[X] = \mu\\
var(X) = \sigma^2\\
E[aX+b] = a\mu+b\\
var(aX+b) = a^2\sigma^2\\
\phi(x) = \mathcal{N}(0, 1) = e^{-x^2/2}/\sqrt{2\pi}\\
\Phi(x) = \int_{-\infty}^x\,\phi(t)\,dt
$
**Beta**
$f_\Theta(\theta) =
\begin{cases}
\frac{1}{B(\alpha, \beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1} & 0 \lt \theta \lt 1\\
0 & o.w.
\end{cases}\\
E[\Theta^m] = \frac{B(\alpha+m,\beta)}{B(\alpha,\beta)}\\
B(\alpha,\beta) = \frac{(\alpha-1)!\,(\beta-1)!}{(\alpha+\beta-1)!}\\
$
**Erlang**
$f_{Y_k}(y) = \frac{\lambda^k\,y^{k-1}\,e^{-{\lambda}y}}{(k-1)!}\\
E[Y_k] = k/\lambda\\
var(Y_k) = k/\lambda^2
$
Properties of Random Variables
------------------------------
**Linearity of Expectation**
$E[aX + b] = aE[X] + b\\
E[aX + bY + c] = aE[X] + bE[Y] + c$
**Iterated Expectation**
$E[X] = E[E[X|Y]]$
**Variance**
$var(X) = E[(X - E[X])^2]\\
var(X) = E[X^2] - (E[X])^2\\
var(aX+b) = a^2\,var(X)\\
\sigma_x = \sqrt{var(X)}$
**Total Variance**
$var(X) = E[var(X|Y)] + var(E[X|Y])
$
**Covariance**
$cov(X,Y) = E[(X-E[X])(Y-E[Y])]\\
cov(X,Y) = E[XY] - E[X]E[Y]\\
var(X+Y) = var(X) + var(Y) + 2\,cov(X,Y)\\
\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)\,var(Y)}}\\
$
**Independence**
If $X, Y$ are independent,
$E[XY] = E[X]\,E[Y]\\
E[g(X)h(Y)] = E[g(X)]\,E[h(Y)]\\
var(X+Y) = var(X) + var(Y)$
If $X, Y$ are independent and normal,
$Z = X + Y \implies Z \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)
$
Inference
---------
**Maximum a Posteriori (MAP)**
$
\begin{array}
_\hat\theta = arg\,max_\theta ...\\
p_\Theta(\theta)\,p_{X|\Theta}(x| \theta) & \Theta,\,X\,discrete\\
p_\Theta(\theta)\,f_{X|\Theta}(x| \theta) & \Theta\,discrete,\, X\,continuous\\
f_\Theta(\theta)\,p_{X|\Theta}(x| \theta) & \Theta\,continuous,\, X\,discrete\\
f_\Theta(\theta)\,f_{X|\Theta}(x| \theta) & \Theta,\, X\, continuous\\
\end{array}$
**Conditional Expectation (LMS)**
$
\Theta = \hat\Theta + \tilde\Theta\\
\hat\Theta = E[\Theta|X] =
\int_\theta \theta\,f_{\Theta|X}(\theta|x)\,d\theta\\
\hat\Theta = E[\Theta|X] =
\sum_\theta \theta\,p_{\Theta|X}(\theta|x)\\
E[\tilde\Theta] = E[\tilde\Theta|X=x] = 0\\
cov(\tilde\Theta,\hat\Theta) = 0\\
var(\Theta) = var(\tilde\Theta) + var(\hat\Theta)
$
**Linear Least Mean Squares (LLMS)**
$
\hat\Theta = E[\Theta] + \frac{cov(\Theta,X)}{var(X)}(X-E[X]) = E[\Theta] + \rho\frac{\sigma_\Theta}{\sigma_X}(X-E[X])\\
\rho = \frac{cov(\Theta,X)}{\sigma_\Theta\sigma_X}\\
E[(\hat\theta - \Theta)^2|X] = (1-\rho^2)\sigma_\Theta^2
$
Limit Theorems
--------------
**Markov Inequality**
If $X$ is non-negative,
$\begin{array}
_P(X \ge a) \le \frac{E[X]}{a} & \forall a \gt 0
\end{array}$
**Chebyshev Inequality**
If $X$ has mean $\mu$ and variance $\sigma^2$,
$\begin{array}
_P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2} & \forall c \gt 0\\
P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2} & \forall k \gt 0
\end{array}$
**Convergence in Probability**
A sequence $Y_1, Y_2, ... Y_n$ converges *in probability* to a real value $a$ if,
$\begin{array}
_\lim\limits_{n \rightarrow \infty} P(|Y_n - a| \ge \epsilon) = 0 & \forall \epsilon \gt 0\\
P(|Y_n - a| \ge \epsilon) \le \delta & \forall n \gt n_0\\
\end{array}$
$\epsilon$ is *accuracy* and $\delta$ is *confidence*
**Weak Law of Large Numbers**
If $X_n$ are i.i.d. with mean $\mu$ and sample mean $M_n$, $M_n$ converges to $\mu$ *in probability*:
$\begin{array}
_\lim\limits_{n \rightarrow \infty} P(|M_n - \mu| \ge \epsilon) = 0 & \forall \epsilon \gt 0
\end{array}$
**Central Limit Theorem**
If $S_n = (X_1+X_2+...+X_n)$ and $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$
$\begin{array}
_\lim\limits_{n \rightarrow \infty} P(Z_n \le z) = \Phi(z) & \forall z
\end{array}
$
**Normal Approximation**
$P(S_n \le c) \approx \Phi(\frac{c - n\mu}{\sigma\sqrt{n}})
$
**De Moivre-Laplace Approximation to the Binomial**
$P(S_n \le c) \approx \Phi(\frac{c+\frac{1}{2} - np}{\sqrt{np(1-p)}})$
Classical Statistics
--------------------
**Sample Mean**
If $X_1, X_2, ..., X_n$ are i.i.d with mean $\theta$ and variance $\sigma^2$
$\hat\Theta_n = M_n = \frac{1}{n}\sum_i X_i$
**Unbiased**
$\begin{array}
_E[\hat\Theta_n] = \theta & \forall\,\theta
\end{array}
$
**Consistent**
$\begin{array}
_\hat\Theta_n \rightarrow \theta & \forall\,\theta
\end{array}
$
**Mean Squared Error**
$E[(\hat\Theta_n - \theta)^2] = var(\hat\Theta_n) = \sigma^2/n\\
E[(\hat\Theta_n - \theta)^2] = var(\hat\Theta_n - \theta) + E[\hat\Theta_n - \theta]^2\\
E[(\hat\Theta_n - \theta)^2] = var(\hat\Theta_n)+ (bias)^2
$
**Standard Error**
$\sqrt{var(\hat\Theta)} = \sigma/\sqrt{n}$
**Confidence Interval**
Typically $\alpha = 0.05, 0.025, 0.01$
$\begin{array}
_P(\hat\Theta^- \le \theta \le \hat\Theta^+) \ge 1 - \alpha & \forall\,\theta
\end{array}
$
**Confidence Interval for Estimation of Mean**
$P(\hat\Theta_n - \frac{1.96\sigma}{\sqrt{n}} \le \theta \le \hat\Theta_n + \frac{1.96\sigma}{\sqrt{n}}) \approx 0.95
$
**Sample Mean Estimate of Variance**
$\hat\sigma^2 = \frac{1}{n-1}\sum_i (X_i - \hat\Theta_n)^2 \rightarrow \sigma^2$
**Maximum Likelihood Estimation**
$\hat\theta_{ML} = arg\,max_\theta p_X(x; \theta)$
Bernoulli and Poisson Processes
-------------------------------
Aspect | Poisson | Bernoulli
-------|-------|-------
Arrival Times | Continuous | Discrete
PMF of # Arrivals | Poisson | Binomial
Interarrival Time CDF | Exponential | Geometric
Time to $k^{th}$ arrival | Erlang | Pascal
Arrival Rate | $\lambda/$unit time | $p/$trial
**Poisson Approximation to the Binomial**
If $\lambda = np$ is constant,
$\lim\limits_{n \rightarrow \infty} \frac{n!}{(n-k)!\,k!}p^k(1-p)^{n-k} \rightarrow e^{-\lambda}\frac{\lambda^k}{k!}
$
Markov Chains
-------------
**n-Step Transition Probabilities**
$r_{ij}(n) = P(X_n = j | X_0 = i)\\
r_{ij}(n) = \sum_{k=1}^m r_{ik}(n-1)p_{kj}\\
r_{ij}(1) = p_{ij}
$
**Steady-State (Stationary Distribution)**
$\lim\limits_{n \rightarrow \infty} r_{ij}(n) = \pi_j\\
\pi_j = \sum_{k=1}^m \pi_kp_{kj}\\
\sum_{k=1}^m \pi_k = 1
$
**Birth-Death**
$b_i = P(X_{n+1} = i+1 | X_n = i)\\
d_i = P(X_{n+1} = i-1| X_n = i)\\
\pi_ib_i = \pi_{i+1}d_{i+1}\\
\pi_i = \pi_0\frac{b_0b_1...b_{i-1}}{d_1d_2...d_i}
$
**Absorption**
$\begin{array}
_a_s = 1\\
a_i = P(X_n=s|X_0=i)\\
a_i = 0 & \forall\, absorbing\, i \neq s\\
a_i = \sum_{j=1}^m p_{ij}a_j & \forall\, transient\, i
\end{array}$
**Expected Time to Absorption**
$\begin{array}
_\mu_i = 0 & \forall\, recurrent\, i\\
\mu_i = 1 + \sum_{j=1}^m p_{ij}\mu_j & \forall\, transient\, i
\end{array}$
**Mean First Passage**
$\begin{array}
_t_s = 0\\
t_i = 1 + \sum_{j=1}^m p_{ij}t_j & \forall i \neq s
\end{array}$
**Mean Recurrence Time**
$t_s^* = 1+ \sum_{j=1}^m p_{sj}t_j
$
> Written with [StackEdit](https://stackedit.io/).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment