Last active
May 8, 2024 21:22
-
-
Save jseabold/4e1f42c089f317844d8f17a2d49bc299 to your computer and use it in GitHub Desktop.
Simulate Inter-Rater Agreement
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from scipy import stats | |
from statsmodels.stats import inter_rater | |
def fleiss_standard_error(table): | |
# not included in statsmodels | |
# only returns overall kappa value | |
n, k = table.shape # n_subjects, n_choices | |
m = table.sum(axis=1)[0] # assume they all have the same ratings count | |
p_bar = table.sum(axis=0) / (n * m) | |
q_bar = 1 - p_bar | |
return ( | |
(2 ** .5 / (p_bar.dot(q_bar) * np.sqrt(n * m * (m - 1)))) | |
* ( | |
(p_bar.dot(q_bar) ** 2) - np.sum(p_bar * q_bar * (q_bar - p_bar)) | |
) ** .5 | |
) | |
def simulate_rater_agreement(probs, n_raters, all_nobs, random_state=12345): | |
rng = np.random.RandomState(random_state) | |
results = [] | |
for nobs in all_nobs: | |
ratings = [] | |
for rater in range(n_raters): | |
ratings.append( | |
np.vstack([ | |
rng.multinomial(1, p, size=nobs) for p in probs | |
]).argmax(axis=1) | |
) | |
if n_raters > 2: | |
table = inter_rater.aggregate_raters(np.column_stack(ratings))[0] | |
test_result = dict() | |
test_result['fleiss_kappa'] = inter_rater.fleiss_kappa(table) | |
test_result['Z'] = ( | |
test_result['fleiss_kappa'] / fleiss_standard_error(table) | |
) | |
test_result['prob'] = 1 - stats.norm.cdf(test_result['Z']) | |
test_result['nobs'] = nobs | |
else: | |
scores = inter_rater.to_table(np.column_stack(ratings))[0] | |
test_result = inter_rater.cohens_kappa(scores) | |
test_result['nobs'] = nobs | |
results.append(test_result) | |
return pd.DataFrame(results) | |
# assume that we have 5 possibilities on a likert scale, 1-5 | |
# assume they're never off by more than 1 | |
ordinal_probabilities1 = [0.05, .9, .05, 0, 0] # 90% accurate on first set | |
ordinal_probabilities2 = [0, .1, .8, .1, 0] # 80% accurate on second set | |
ordinal_probabilities3 = [0, 0, .125, .75, 0.125] # 75% accurate on last set | |
probs = np.c_[ | |
ordinal_probabilities1, ordinal_probabilities2, ordinal_probabilities3 | |
].T | |
simulations_two = simulate_rater_agreement( | |
probs, 2, [10, 50, 100, 500, 1000] | |
).drop(['distribution_zero_null', 'distribution_kappa'], axis=1) | |
simulations_three = simulate_rater_agreement( | |
probs, 3, [10, 50, 100, 500, 1000] | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment