Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.layers.normalization import BatchNormalization | |
#AlexNet with batch normalization in Keras | |
#input image is 224x224 | |
model = Sequential() | |
model.add(Convolution2D(64, 3, 11, 11, border_mode='full')) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import layers, models | |
Nin = 784 | |
Nh = 100 | |
number_of_class = 10 | |
Nout = number_of_class | |
class ANN(models.Model): | |
def __init__(self, Nin, Nh, Nout): | |
# Prepare network layers and activate functions |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.layers import Reshape | |
from keras.layers.core import Activation | |
from keras.layers.normalization import BatchNormalization | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D, UpSampling2D | |
from keras.layers.convolutional import Convolution1D, Conv1D | |
from keras.layers.core import Flatten | |
from keras.optimizers import SGD | |
from keras.datasets import mnist |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"floatx": "float32", | |
"epsilon": 1e-07, | |
"image_dim_ordering": "th", | |
"backend": "theano" | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
#-*- coding: utf-8 -*- | |
# Supporting Python 3 | |
import sys, os, re | |
try: bibtexdb = open(sys.argv[1]).read() | |
except: print("Error: specify the file to be processed!") | |
if not os.path.isfile('journalList.txt'): |