Created
February 18, 2024 21:19
-
-
Save jsks/2798977876c01d85df68181b9f5912ff to your computer and use it in GitHub Desktop.
Gaussian mixture model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Distributions, LinearAlgebra, LogExpFunctions | |
function gaussians(μ, Σ) | |
@views [MvNormal(μ[:, i], Σ[:, :, i]) for i in 1:size(μ, 2)] | |
end | |
function E_step!(Y, γ, π, μ, Σ) | |
dists = gaussians(μ, Σ) | |
lpi = log.(π) | |
for i in 1:size(Y, 2) | |
lp = [lpi[k] + logpdf(dists[k], view(Y, :, i)) for k in 1:length(π)] | |
denominator = logsumexp(lp) | |
for k in 1:length(π) | |
γ[i, k] = exp(lp[k] - denominator) | |
end | |
end | |
end | |
function M_step!(Y, γ, π, μ, Σ) | |
cluster_sums = vec(sum(γ, dims=1)) | |
π .= cluster_sums ./ size(Y, 2) | |
mul!(μ, Y, γ) | |
μ ./= cluster_sums' | |
@views for k in 1:length(π) | |
Y_centered = Y .- μ[:, k] | |
Σ_k = zeros(size(Y, 1), size(Y, 1)) | |
for i in 1:size(Y, 2) | |
Σ_k += γ[i, k] * (Y_centered[:, i] * Y_centered[:, i]') | |
end | |
Σ[:, :, k] .= Σ_k / cluster_sums[k] | |
end | |
end | |
function EM(Y, K; max_iter=10_000, tol=1e-5) | |
π = fill(1/K, K) | |
μ = Y[:, rand(1:size(Y, 2), K)] | |
Σ = cat([Diagonal(ones(size(Y, 1))) for k in 1:K]..., dims=3) | |
γ = zeros(size(Y, 2), K) | |
log_lik_prev = log_lik_new = -Inf | |
for i in 1:max_iter | |
E_step!(Y, γ, π, μ, Σ) | |
M_step!(Y, γ, π, μ, Σ) | |
log_lik_new = log_lik(Y, π, μ, Σ) | |
println("Iteration $i: Log Likelihood = $log_lik_new") | |
if abs(log_lik_new - log_lik_prev) < tol | |
return π, μ, Σ, γ | |
end | |
log_lik_prev = log_lik_new | |
end | |
error("Model failed to converge") | |
end | |
function predict(Y, results) | |
dists = [MixtureModel(gaussians(μ, Σ), π) for (π, μ, Σ, _) in results] | |
[argmax(logpdf(d, y) for d in dists) - 1 for y in eachcol(Y)] | |
end | |
### | |
# Real data | |
using Base.Threads, Colors, MLDatasets, MultivariateStats, Plots | |
pixels, labels = MNIST(split=:train)[:] | |
model_input = reshape(pixels, (28*28, 60_000)) | |
### | |
# Dimensionality reduction | |
pca = fit(PCA, model_input, maxoutdim=50) | |
reduced_data = transform(pca, model_input) | |
### | |
# Parallelized run --- one model per digit | |
results = fetch.([@spawn EM(reduced_data[:, labels .== i], 4) for i in 0:9]) | |
digit = results[1] | |
img = map(μ -> reconstruct(pca, μ), eachcol(digit[2])) | |
plts = [plot(Gray.(reshape(i, 28, 28)')) for i in img] | |
plot(plts..., layout = (1, 4), axis = false, ticks = false) | |
# Plotted marginal expectations --- ie, the image of the predicted | |
# 'average' digit per model | |
EY = map(((π, μ, _, _),) -> reconstruct(pca, μ * π), results) | |
plts = [Gray.(reshape(μ, 28, 28)') |> plot for μ in EY] | |
plot(plts..., layout = length(EY), axis = false, ticks = false) | |
### | |
# Classify by finding the model with the highest log-likelihood for | |
# the data | |
Z_hat = predict(reduced_data, results) | |
mean(Z_hat .== labels) | |
### | |
# Test predictive accuracy of our test data | |
test_pixels, test_labels = MNIST(split=:test)[:] | |
test_input = reshape(test_pixels, (28*28, 10_000)) | |
test_reduced = transform(pca, test_input) | |
Z_test = predict(test_reduced, results) | |
mean(Z_test .== test_labels) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment