Created
October 17, 2013 19:17
-
-
Save jsonbecker/7030622 to your computer and use it in GitHub Desktop.
Quick function to calculate common statistics when evaluating a predictor of binary outcomes.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
cutoff_matrix <- function(df, classifier, outcome, breaks=seq(1,0,-.01)){ | |
results <- data.frame(cutoff=vector(mode='numeric', length=length(breaks)), | |
true_pos=vector(mode='numeric', length=length(breaks)), | |
true_neg=vector(mode='numeric', length=length(breaks)), | |
false_pos=vector(mode='numeric', length=length(breaks)), | |
false_neg=vector(mode='numeric', length=length(breaks))) | |
for(i in seq(1, length(breaks))){ | |
value <- breaks[i] | |
j <- data.frame(table(df[[classifier]]>value, df[[outcome]])) | |
results[i,1] <- value | |
results[i,2] <- subset(j, Var1==TRUE & Var2=='Y')$Freq | |
results[i,3] <- subset(j, Var1==FALSE & Var2=='N')$Freq | |
results[i,4] <- subset(j, Var1==TRUE & Var2=='N')$Freq | |
results[i,5] <- subset(j, Var1==FALSE & Var2=='Y')$Freq | |
} | |
results <- mutate(results, | |
true_neg_rate = true_neg / (true_neg + false_neg), | |
true_pos_rate = true_pos / (true_pos + false_pos), | |
false_pos_rate = false_pos / (true_pos + false_pos), | |
false_neg_rate = false_neg / (true_neg + false_neg), | |
accuracy = (true_pos + true_neg) / | |
(true_pos + true_neg + false_pos + false_neg)) | |
return(results) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment