Created
September 5, 2021 13:24
-
-
Save jsrimr/3d0ad97ecc45286630e6efbaefe68f0f to your computer and use it in GitHub Desktop.
function preservation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def _wider_conv(self, teacher_w1, teacher_b1, teacher_w2, width_coeff, verification): | |
new_width = int(width_coeff * teacher_w1.shape[3]) | |
rand = np.random.randint(teacher_w1.shape[3], size=(new_width - teacher_w1.shape[3])) | |
replication_factor = np.bincount(rand) | |
student_w1 = teacher_w1.copy() | |
student_w2 = teacher_w2.copy() | |
student_b1 = teacher_b1.copy() | |
# target layer update (i) | |
for i in range(len(rand)): | |
teacher_index = rand[i] | |
new_weight = teacher_w1[:, :, :, teacher_index] | |
new_weight = new_weight[:, :, :, np.newaxis] | |
student_w1 = np.concatenate((student_w1, new_weight), axis=3) | |
student_b1 = np.append(student_b1, teacher_b1[teacher_index]) | |
# next layer update (i+1) | |
for i in range(len(rand)): | |
teacher_index = rand[i] | |
factor = replication_factor[teacher_index] + 1 | |
assert factor > 1, 'Error in Net2Wider' | |
new_weight = teacher_w2[:, :, teacher_index, :] * (1. / factor) | |
new_weight_re = new_weight[:, :, np.newaxis, :] | |
student_w2 = np.concatenate((student_w2, new_weight_re), axis=2) | |
student_w2[:, :, teacher_index, :] = new_weight | |
if verification: | |
import scipy.signal | |
inputs = np.random.rand(teacher_w1.shape[0] * 4, teacher_w1.shape[1] * 4, teacher_w1.shape[2]) | |
ori1 = np.zeros((teacher_w1.shape[0] * 4, teacher_w1.shape[1] * 4, teacher_w1.shape[3])) | |
ori2 = np.zeros((teacher_w1.shape[0] * 4, teacher_w1.shape[1] * 4, teacher_w2.shape[3])) | |
new1 = np.zeros((teacher_w1.shape[0] * 4, teacher_w1.shape[1] * 4, student_w1.shape[3])) | |
new2 = np.zeros((teacher_w1.shape[0] * 4, teacher_w1.shape[1] * 4, student_w2.shape[3])) | |
for i in range(teacher_w1.shape[3]): | |
for j in range(inputs.shape[2]): | |
if j == 0: | |
tmp = scipy.signal.convolve2d(inputs[:, :, j], teacher_w1[:, :, j, i], mode='same') | |
else: | |
tmp += scipy.signal.convolve2d(inputs[:, :, j], teacher_w1[:, :, j, i], mode='same') | |
ori1[:, :, i] = tmp + teacher_b1[i] | |
for i in range(teacher_w2.shape[3]): | |
for j in range(ori1.shape[2]): | |
if j == 0: | |
tmp = scipy.signal.convolve2d(ori1[:, :, j], teacher_w2[:, :, j, i], mode='same') | |
else: | |
tmp += scipy.signal.convolve2d(ori1[:, :, j], teacher_w2[:, :, j, i], mode='same') | |
ori2[:, :, i] = tmp | |
for i in range(student_w1.shape[3]): | |
for j in range(inputs.shape[2]): | |
if j == 0: | |
tmp = scipy.signal.convolve2d(inputs[:, :, j], student_w1[:, :, j, i], mode='same') | |
else: | |
tmp += scipy.signal.convolve2d(inputs[:, :, j], student_w1[:, :, j, i], mode='same') | |
new1[:, :, i] = tmp + student_b1[i] | |
for i in range(student_w2.shape[3]): | |
for j in range(new1.shape[2]): | |
if j == 0: | |
tmp = scipy.signal.convolve2d(new1[:, :, j], student_w2[:, :, j, i], mode='same') | |
else: | |
tmp += scipy.signal.convolve2d(new1[:, :, j], student_w2[:, :, j, i], mode='same') | |
new2[:, :, i] = tmp | |
err = np.abs(np.sum(ori2 - new2)) | |
assert err < self._error_th, 'Verification failed: [ERROR] {}'.format(err) | |
return student_w1, student_b1, student_w2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment