Created
February 5, 2021 06:20
-
-
Save jsrimr/e76f259d93b0f91d3ad176bec8b0f5ef to your computer and use it in GitHub Desktop.
pytorch mnist train with multi-gpu using DataParallel
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
from torch.optim.lr_scheduler import StepLR | |
class Net(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.bn1 = nn.BatchNorm2d(10) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.bn2 = nn.BatchNorm2d(20) | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
x = self.bn1(x) | |
x = F.relu(F.max_pool2d(self.conv2(x), 2)) | |
x = self.bn2(x) | |
x = torch.flatten(x, 1) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return F.log_softmax(x, dim=1) | |
def train(args, model, device, train_loader, optimizer, epoch): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
if args.dry_run: | |
break | |
def test(model, device, test_loader): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | |
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
def main(): | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=128, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=10, metavar='N', | |
help='number of epochs to train (default: 10)') | |
parser.add_argument('--lr', type=float, default=1.0, metavar='LR', | |
help='learning rate (default: 1.0)') | |
parser.add_argument('--gamma', type=float, default=0.7, metavar='M', | |
help='Learning rate step gamma (default: 0.7)') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='disables CUDA training') | |
parser.add_argument('--dry-run', action='store_true', default=False, | |
help='quickly check a single pass') | |
parser.add_argument('--seed', type=int, default=1, metavar='S', | |
help='random seed (default: 1)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
parser.add_argument('--save-model', action='store_true', default=False, | |
help='For Saving the current Model') | |
args = parser.parse_args() | |
use_cuda = not args.no_cuda and torch.cuda.is_available() | |
torch.manual_seed(args.seed) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
train_kwargs = {'batch_size': args.batch_size} | |
test_kwargs = {'batch_size': args.test_batch_size} | |
if use_cuda: | |
cuda_kwargs = {'num_workers': 1, | |
'pin_memory': True, | |
'shuffle': True} | |
train_kwargs.update(cuda_kwargs) | |
test_kwargs.update(cuda_kwargs) | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
]) | |
dataset1 = datasets.MNIST('../data', train=True, download=True, | |
transform=transform) | |
dataset2 = datasets.MNIST('../data', train=False, | |
transform=transform) | |
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) | |
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) | |
# model = Net().to(device) | |
# optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | |
model = Net() | |
model = nn.DataParallel(model, device_ids=[0,1,2,3]) | |
model.to(device) | |
optimizer = optim.SGD(model.parameters(), lr = 0.01) | |
# scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | |
for epoch in range(1, args.epochs + 1): | |
train(args, model, device, train_loader, optimizer, epoch) | |
# scheduler.step() | |
test(model, device, test_loader) | |
if args.save_model: | |
torch.save(model.state_dict(), "mnist_cnn.pt") | |
import time | |
if __name__ == '__main__': | |
start_time = time.time() | |
main() | |
print("Time taken : ", time.time() - start_time) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment