Last active
May 23, 2018 08:47
-
-
Save jsvisa/9ed8d95630f69a00b0b012396ab46d5c to your computer and use it in GitHub Desktop.
convert_data.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding=utf-8 | |
import math | |
import os | |
import random | |
import tensorflow as tf | |
import dataset_utils | |
import argparse | |
# 定义一些全局常量 | |
# TRAIN_FRACTION: 定义训练数据比例 | |
TRAIN_FRACTION = 0.6 | |
# TEST_FRACTION: 定义测试数据比例 | |
TEST_FRACTION = 0.2 | |
# 定义随机数种子值 | |
_RANDOM_SEED = 0 | |
# 定义SHARD数量 | |
_NUM_SHARDS = 2 | |
# DATASET_SUBDIR: 定义数据子文件名 | |
DATASET_SUBDIR = "dataset" | |
# 定义任务名称 | |
TASKS = ["main"] | |
split_to_count = {} | |
# 获取全部文件名和数据标签 | |
def _get_all_filenames(dataset_dir, class_label): | |
filenames_and_labels = [] | |
for filename in tf.gfile.ListDirectory(dataset_dir): | |
if filename == DATASET_SUBDIR: | |
continue | |
path = os.path.join(dataset_dir, filename) | |
if tf.gfile.IsDirectory(path): | |
filenames_and_labels.extend(_get_all_filenames(path, class_label)) | |
elif dataset_utils.is_picture_file(filename): | |
filenames_and_labels.append((path, class_label)) | |
return filenames_and_labels | |
# 获取转换为TFRecord类型的数据文件名 | |
def _get_dataset_filename(dataset_dir, split_name, task_name, shard_id): | |
output_filename = '%s_%s_%05d-of-%05d.tfrecord' % ( | |
task_name, split_name, shard_id, _NUM_SHARDS) | |
return os.path.join(dataset_dir, output_filename) | |
# 数据转换,读取图像数据并将数据转换成TFRecord格式 | |
def _convert_dataset(split_name, task_name, filenames_and_labels, dataset_dir): | |
num_per_shard = int(math.ceil(len(filenames_and_labels) / float(_NUM_SHARDS))) | |
print("For task %s, split %s, read data and convert into %d shards with %d examples per shard" % ( | |
task_name, split_name, _NUM_SHARDS, num_per_shard)) | |
with tf.Graph().as_default(): | |
image_reader = dataset_utils.ImageReader() | |
with tf.Session() as sess: | |
for shard_id in range(_NUM_SHARDS): | |
output_filename = _get_dataset_filename(dataset_dir, split_name, task_name, shard_id) | |
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | |
print("Start reading images in shard %d" % shard_id) | |
start_ndx = shard_id * num_per_shard | |
end_ndx = min((shard_id+1) * num_per_shard, len(filenames_and_labels)) | |
for i in range(start_ndx, end_ndx): | |
image_data = tf.gfile.FastGFile(filenames_and_labels[i][0], 'r').read() | |
height, width = image_reader.read_image_dims(sess, image_data) | |
class_id = filenames_and_labels[i][1] | |
example = dataset_utils.image_to_tfexample(image_data, 'jpg', height, width, class_id, filenames_and_labels[i][0]) | |
tfrecord_writer.write(example.SerializeToString()) | |
# 输出数据集 | |
def _output_dataset(filenames_and_labels, labels_to_class_names, task_name, dataset_dir): | |
random.shuffle(filenames_and_labels) | |
all_examples = len(filenames_and_labels) | |
train_examples = int(all_examples * TRAIN_FRACTION) | |
test_examples = int(all_examples * TEST_FRACTION) | |
validate_examples = all_examples - train_examples - test_examples | |
print("Generated %d training examples, %d testing examples and %d validation examples for the main task. " % ( | |
train_examples, test_examples, validate_examples)) | |
_convert_dataset('test', task_name, filenames_and_labels[:test_examples], dataset_dir) | |
_convert_dataset('train', task_name, filenames_and_labels[test_examples:train_examples + test_examples], dataset_dir) | |
_convert_dataset('validate', task_name, filenames_and_labels[train_examples + test_examples:], dataset_dir) | |
dataset_utils.write_label_file( | |
labels_to_class_names, dataset_dir, "%s_labels_to_class.txt" % task_name) | |
global split_to_count | |
split_to_count["%s_train" % task_name] = train_examples | |
split_to_count["%s_test" % task_name] = test_examples | |
split_to_count["%s_validate" % task_name] = validate_examples | |
# 主要数据转换函数,将输入的数据集转换后存储到 output_dir | |
def _process_main(dataset_dir, output_dir): | |
labels_to_class_names = {} | |
filenames_and_labels = [] | |
cur_id = 0 | |
for filename in tf.gfile.ListDirectory(dataset_dir): | |
if filename == DATASET_SUBDIR: | |
continue | |
path = os.path.join(dataset_dir, filename) | |
if tf.gfile.IsDirectory(path): | |
filenames_and_labels.extend(_get_all_filenames(path, cur_id)) | |
labels_to_class_names[cur_id] = filename | |
cur_id += 1 | |
_output_dataset(filenames_and_labels, labels_to_class_names, "main", output_dir) | |
# 处理数据标签 | |
def _process_labels(dataset_dir, output_dir, task_name, cur_dict): | |
labels_to_class_names = {} | |
filenames_and_labels = [] | |
cur_id = 0 | |
for fir_dir_name in tf.gfile.ListDirectory(dataset_dir): | |
if fir_dir_name == DATASET_SUBDIR: | |
continue | |
if not fir_dir_name in cur_dict: | |
continue | |
path = os.path.join(dataset_dir, fir_dir_name) | |
if not tf.gfile.IsDirectory(path): | |
continue | |
for sec_dir_name in tf.gfile.ListDirectory(path): | |
parts = sec_dir_name.split("-") | |
if not parts[1] in cur_dict[fir_dir_name]: | |
continue | |
subdir = os.path.join(path, sec_dir_name) | |
if not tf.gfile.IsDirectory(subdir): | |
continue | |
filenames_and_labels.extend(_get_all_filenames(subdir, cur_id)) | |
labels_to_class_names[cur_id] = sec_dir_name | |
cur_id += 1 | |
_output_dataset(filenames_and_labels, labels_to_class_names, task_name, output_dir) | |
# 运行函数,获取数据文件地址,转换数据 | |
def run(dataset_dir, output_dir): | |
tf.load_file_system_library("/root/caicloud/tensorflow/bazel-bin/tensorflow/core/platform/vulture/vulture_file_system.so") | |
output_dir = os.path.join(output_dir, DATASET_SUBDIR) | |
if not tf.gfile.Exists(dataset_dir): | |
raise("Dataset does not exist.") | |
if tf.gfile.Exists(output_dir): | |
tf.gfile.DeleteRecursively(output_dir) | |
tf.gfile.MakeDirs(output_dir) | |
random.seed(_RANDOM_SEED) | |
_process_main(dataset_dir, output_dir) | |
global split_to_count | |
dataset_utils.write_count_file(split_to_count, output_dir) | |
print('\nFinished converting the dataset!') | |
# 定义传入参数 | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Convert data to TFRecord format") | |
parser.add_argument('--dataset_name', dest='dataset_name', help='Dataset Name', default='data/demo_single_label') | |
parser.add_argument('--output_name', dest='output_name', help='Output Name', default='data/dataset') | |
parser.add_argument('--train_fraction', dest='train_fraction', help='Train Fraction', default='0.6') | |
parser.add_argument('--test_fraction', dest='test_fraction', help='Test Fraction', default='0.2') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
TRAIN_FRACTION = float(args.train_fraction) | |
TEST_FRACTION = float(args.test_fraction) | |
run(args.dataset_name, args.output_name) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment