-
-
Save jthomassie/761e23108bc2610ee26ffb4019deeca4 to your computer and use it in GitHub Desktop.
Perlin implementation in javascript, ported from https://gist.github.com/Flafla2/f0260a861be0ebdeef76
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Implementation of perlin noise, ported from https://gist.github.com/Flafla2/f0260a861be0ebdeef76 to js. | |
var repeat = -1; | |
var setRepeat = function(repeat) { | |
this.repeat = repeat; | |
}; | |
/** | |
* @return {number} | |
*/ | |
var OctavePerlin = function (x, y, z, octaves, persistence) { | |
var total = 0; | |
var frequency = 1; | |
var amplitude = 1; | |
var maxValue = 0; // Used for normalizing result to 0.0 - 1.0 | |
for (var i = 0; i < octaves; i++) { | |
total += perlin(x * frequency, y * frequency, z * frequency) * amplitude; | |
maxValue += amplitude; | |
amplitude *= persistence; | |
frequency *= 2; | |
} | |
return total / maxValue; // todo : find out what this means | |
}; | |
var permutation = [151, 160, 137, 91, 90, 15, // Hash lookup table as defined by Ken Perlin. This is a randomly | |
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, // arranged array of all numbers from 0-255 inclusive. | |
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, | |
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, | |
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, | |
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, | |
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, | |
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, | |
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, | |
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, | |
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, | |
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, | |
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 | |
]; | |
var p; // Doubled permutation to avoid overflow | |
var Perlin = function () { | |
p = []; | |
for (var x = 0; x < 512; x++) { | |
p.push(permutation[x % 256]); | |
} | |
}; | |
Perlin(); | |
var perlin = function (x, y, z) { | |
if (repeat > 0) { // If we have any repeat on, change the coordinates to their "local" repetitions | |
x = x % repeat; | |
y = y % repeat; | |
z = z % repeat; | |
} | |
var xi = parseInt(x) & 255; // Calculate the "unit cube" that the point asked will be located in | |
var yi = parseInt(y) & 255; // The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that | |
var zi = parseInt(z) & 255; // plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube. | |
var xf = x - parseInt(x); // We also fade the location to smooth the result. | |
var yf = y - parseInt(y); | |
var zf = z - parseInt(z); | |
var u = fade(xf); | |
var v = fade(yf); | |
var w = fade(zf); | |
var aaa, aba, aab, abb, baa, bba, bab, bbb; | |
aaa = p[p[p[xi] + yi] + zi]; | |
aba = p[p[p[xi] + inc(yi)] + zi]; | |
aab = p[p[p[xi] + yi] + inc(zi)]; | |
abb = p[p[p[xi] + inc(yi)] + inc(zi)]; | |
baa = p[p[p[inc(xi)] + yi] + zi]; | |
bba = p[p[p[inc(xi)] + inc(yi)] + zi]; | |
bab = p[p[p[inc(xi)] + yi] + inc(zi)]; | |
bbb = p[p[p[inc(xi)] + inc(yi)] + inc(zi)]; | |
var x1, x2, y1, y2; | |
x1 = lerp(grad(aaa, xf, yf, zf), // The gradient function calculates the dot product between a pseudorandom | |
grad(baa, xf - 1, yf, zf), // gradient vector and the vector from the input coordinate to the 8 | |
u); // surrounding points in its unit cube. | |
x2 = lerp(grad(aba, xf, yf - 1, zf), // This is all then lerped together as a sort of weighted average based on the faded (u,v,w) | |
grad(bba, xf - 1, yf - 1, zf), // values we made earlier. | |
u); | |
y1 = lerp(x1, x2, v); | |
x1 = lerp(grad(aab, xf, yf, zf - 1), | |
grad(bab, xf - 1, yf, zf - 1), | |
u); | |
x2 = lerp(grad(abb, xf, yf - 1, zf - 1), | |
grad(bbb, xf - 1, yf - 1, zf - 1), | |
u); | |
y2 = lerp(x1, x2, v); | |
return (lerp(y1, y2, w) + 1) / 2; // For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1) | |
}; | |
var inc = function (num) { | |
num++; | |
if (repeat > 0) num %= repeat; | |
return num; | |
}; | |
var grad = function (hash, x, y, z) { | |
var h = hash & 15; // Take the hashed value and take the first 4 bits of it (15 == 0b1111) | |
var u = h < 8 /* 0b1000 */ ? x : y; // If the most significant bit (MSB) of the hash is 0 then set u = x. Otherwise y. | |
var v; // In Ken Perlin's original implementation this was another conditional operator (?:). I | |
// expanded it for readability. | |
if (h < 4 /* 0b0100 */) // If the first and second significant bits are 0 set v = y | |
v = y; | |
else if (h === 12 /* 0b1100 */ || h === 14 /* 0b1110*/)// If the first and second significant bits are 1 set v = x | |
v = x; | |
else // If the first and second significant bits are not equal (0/1, 1/0) set v = z | |
v = z; | |
return ((h & 1) === 0 ? u : -u) + ((h & 2) === 0 ? v : -v); // Use the last 2 bits to decide if u and v are positive or negative. Then return their addition. | |
}; | |
var fade = function (t) { | |
// Fade function as defined by Ken Perlin. This eases coordinate values | |
// so that they will "ease" towards integral values. This ends up smoothing | |
// the final output. | |
return t * t * t * (t * (t * 6 - 15) + 10); // 6t^5 - 15t^4 + 10t^3 | |
}; | |
var lerp = function (a, b, x) { | |
return a + x * (b - a); | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment