Created
April 2, 2024 20:58
-
-
Save jtrive84/aefc33594e2f518869a32052f62c1397 to your computer and use it in GitHub Desktop.
Classifier evaluation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from sklearn.metrics import ( | |
PrecisionRecallDisplay, precision_recall_curve, RocCurveDisplay, roc_curve, | |
ConfusionMatrixDisplay, confusion_matrix | |
) | |
beta = 2 | |
prior_thresh = .50 | |
p1, r1, thresh1 = precision_recall_curve(yactual, ypred1) | |
p2, r2, thresh2 = precision_recall_curve(yactual, ypred2) | |
# Determine threshold that maximizes f1 score. | |
f1_1 = 2 * (p1 * r1) / (p1 + r1) | |
f1_2 = 2 * (p2 * r2) / (p2 + r2) | |
# Determine threshold that maximizes f_beta score. | |
fb_1 = (1 + beta**2) * (p1 * r1) / ((beta**2 * p1) + r1) | |
fb_2 = (1 + beta**2) * (p2 * r2) / ((beta**2 * p2) + r2) | |
best_f1_1 = thresh1[np.argmax(f1_1)] | |
best_f1_2 = thresh2[np.argmax(f1_2)] | |
best_fb_1 = thresh1[np.argmax(fb_1)] | |
best_fb_2 = thresh2[np.argmax(fb_2)] | |
print(f"best f1 thresh1: {best_f1_1:.5f}") | |
print(f"best f1 thresh2: {best_f1_2:.5f}") | |
print(f"best fb thresh1: {best_fb_1:.5f}") | |
print(f"best fb thresh2: {best_fb_2:.5f}") | |
yhat1 = np.where(ypred1 >= prior_thresh, 1, 0) | |
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 3.5), tight_layout=True) | |
pr_disp = PrecisionRecallDisplay.from_predictions( | |
yactual, ypred1, name="mm", plot_chance_level=False, ax=ax1, color="#CD0066" | |
) | |
pr_disp.ax_.set_title("mm Precision-Recall curve", fontsize=9) | |
ax1.grid(True) | |
roc_disp = RocCurveDisplay.from_predictions( | |
yactual, ypred1, name="mm", plot_chance_level=True, ax=ax2, color="#191964" | |
) | |
ax2.grid(True) | |
roc_disp.ax_.set_title("mm ROC curve", fontsize=9) | |
cm_disp = ConfusionMatrixDisplay.from_predictions(yactual, yhat1, ax=ax3, colorbar=False) | |
cm_disp.ax_.set_title(f"mm confusion matrix (thesh={prior_thresh:.2})", fontsize=9) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment