Created
May 31, 2024 10:25
-
-
Save jtuttas/f4dafd71ab234bbbf0c493360094f36b to your computer and use it in GitHub Desktop.
zutritt.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
from PIL import Image | |
import re | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from datasets import load_dataset | |
import torch | |
allowed_cars = ["HAP515"] | |
# Initialisieren Sie die Kamera | |
cap = cv2.VideoCapture(0) # '0' ist für die Standardkamera Ihres Computers. | |
processor = DonutProcessor.from_pretrained( | |
"naver-clova-ix/donut-base-finetuned-cord-v2") | |
model = VisionEncoderDecoderModel.from_pretrained( | |
"naver-clova-ix/donut-base-finetuned-cord-v2") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# load document image | |
#dataset = load_dataset("hf-internal-testing/example-documents", split="test") | |
try: | |
# Endlosschleife | |
while True: | |
# Einzelnes Bild aufnehmen | |
ret, frame = cap.read() | |
# Überprüfen Sie, ob das Bild korrekt aufgenommen wurde | |
if ret: | |
# Konvertieren Sie das Bild von BGR zu RGB | |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Erstellen Sie ein PIL.Image aus dem RGB-Frame | |
pil_image = Image.fromarray(rgb_frame) | |
image = pil_image | |
# prepare decoder inputs | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer( | |
task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( | |
processor.tokenizer.pad_token, "") | |
# remove first task start token | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() | |
print(processor.token2json(sequence)) | |
seq = processor.token2json(sequence) | |
seq = seq["text_sequence"].replace(".", "").replace(" ", "") | |
cut_off_index = seq.find('<') | |
if cut_off_index != -1: # Find gibt -1 zurück, wenn das Zeichen nicht gefunden wird | |
seq = seq[:cut_off_index] | |
print(seq) | |
found = False | |
for car in allowed_cars: | |
if car == seq: | |
print("Car is allowed") | |
found = True | |
break | |
if not found: | |
print("Car is not allowed") | |
seq="" | |
except KeyboardInterrupt: | |
print("Programm beendet") | |
finally: | |
cap.release() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment