Skip to content

Instantly share code, notes, and snippets.

@juancarloscruzd
Created August 7, 2014 18:10
Show Gist options
  • Save juancarloscruzd/a267a08f950dd07a9764 to your computer and use it in GitHub Desktop.
Save juancarloscruzd/a267a08f950dd07a9764 to your computer and use it in GitHub Desktop.
\documentclass[a4paper]{article}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{mathrsfs}
\usepackage{amssymb}
\usepackage[colorinlistoftodos]{todonotes}
\title{Función Delta de Dirac}
\author{Juancarlos Cruz}
\date{\today}
\begin{document}
\maketitle
\subsection{Propiedades empleadas}
\begin{enumerate}
\item $\mathscr{L}\{\delta (t)\}=1$
\item $\mathscr{L}\{\delta (t - t_{0})\} = e^{-st}$
\end{enumerate}
\begin{enumerate}
\item $\mathscr{L}\{f(t)\}=F(s)$
\item $\mathscr{L}\{f'(t)\} = S\mathscr{L}\{f(t)\}-f(0)$
\item $\mathscr{L}\{f''(t)\} = S^2\mathscr{L}\{f(t)\}-Sf(0)-f'(0)$
\end{enumerate}
\section{Problemas propuestos}
\subsection{$y' - 3y = \delta(t-2) ; y_{(0)} = 0$}
\begin{enumerate}
\item Aplicamos Laplace a todos los miembros: \\
$s\mathscr{L}\{f(t)\} - f_{(0)} - 3\mathscr{L}\{f(t)\} = e^{-2s} $
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\
$\mathscr{L}\{f(t)\}(s-3) = e^{-2s}$
\item Despejamos \\
$\mathscr{L}\{f(t)\} = \frac{e^{-2s}}{s-3}$ \\
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\
$f(t) = \mu(t-2)\mathscr{L}^{-1} (\frac{1}{s-3})_{t\to(t-2)}$
\item Resolvermos \\
$f(t) = \mu(t-2)e^{3(t-2)}$
\end{enumerate}
\subsection{$y' + y = \delta(t-1) ; y_{(0)} = 2$}
\begin{enumerate}
\item Aplicamos Laplace a todos los miembros: \\
$s\mathscr{L}\{f(t)\} - f_{(0)} + \mathscr{L}\{f(t)\} = e^{-s} $
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\
$\mathscr{L}\{f(t)\}(s+1) - 2= e^{-s}$
\item Despejamos \\
$\mathscr{L}\{f(t)\} = \frac{e^{-s}+2}{s+1}$ \\
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\
$f(t) = \mathscr{L}^{-1} (\frac{e^{-s}}{s+1}) + 2\mathscr{L}^{-1} (\frac{1}{s+1}) $\\
$f(t) = \mu(t-1)\mathscr{L}^{-1} (\frac{1}{s+1})_{t\to(t-1)} + 2e^{-t}$
\item Resolvermos \\
$f(t) = \mu(t-1)e^{-(t-1)} + 2e^{-t}$
\end{enumerate}
\subsection{$y'' + y = \delta(t-2\pi) ; y_{(0)} = 0, y'_{(0)} = 1$}
\begin{enumerate}
\item Aplicamos Laplace a todos los miembros: \\
$s^2\mathscr{L}\{f(t)\} - sf_{(0)} - f'_{(0)} + \mathscr{L}\{f(t)\} = e^{-2\pi s } $
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\
$\mathscr{L}\{f(t)\}(s^2+1) - 1= e^{-2\pi s}$
\item Despejamos \\
$\mathscr{L}\{f(t)\} = \frac{e^{-2\pi s}+1}{s^2+1}$ \\
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\
$f(t) = \mathscr{L}^{-1} (\frac{e^{-2\pi s}}{s^2+1}) + \mathscr{L}^{-1} (\frac{1}{s^2+1}) $\\
$f(t) = \mu(t-2\pi)\mathscr{L}^{-1} (\frac{1}{s^2+1})_{t\to(t-2\pi)} + sen(t)$
\item Resolvermos \\
$f(t) = \mu(t-2\pi)sen(t-2\pi) + sen(t)$
\end{enumerate}
\subsection{$y'' + 16y = \delta(t-2\pi) ; y_{(0)} = 0, y'_{(0)} = 1$}
\begin{enumerate}
\item Aplicamos Laplace a todos los miembros: \\
$s^2\mathscr{L}\{f(t)\} - sf_{(0)} - f'_{(0)} + 16\mathscr{L}\{f(t)\} = e^{-2\pi s } $
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\
$\mathscr{L}\{f(t)\}(s^2+16)= e^{-2\pi s}$
\item Despejamos \\
$\mathscr{L}\{f(t)\} = \frac{e^{-2\pi s}}{s^2+16}$ \\
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\
$f(t) = \mu(t-2\pi)\mathscr{L}^{-1} (\frac{1}{s^2+16})_{t\to(t-2\pi)}$
\item Resolvermos \\
$f(t) = \mu(t-2\pi)sen(4(t-2\pi))$
\end{enumerate}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment