Created
August 7, 2014 18:10
-
-
Save juancarloscruzd/a267a08f950dd07a9764 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[a4paper]{article} | |
\usepackage[english]{babel} | |
\usepackage[utf8]{inputenc} | |
\usepackage{amsmath} | |
\usepackage{graphicx} | |
\usepackage{mathrsfs} | |
\usepackage{amssymb} | |
\usepackage[colorinlistoftodos]{todonotes} | |
\title{Función Delta de Dirac} | |
\author{Juancarlos Cruz} | |
\date{\today} | |
\begin{document} | |
\maketitle | |
\subsection{Propiedades empleadas} | |
\begin{enumerate} | |
\item $\mathscr{L}\{\delta (t)\}=1$ | |
\item $\mathscr{L}\{\delta (t - t_{0})\} = e^{-st}$ | |
\end{enumerate} | |
\begin{enumerate} | |
\item $\mathscr{L}\{f(t)\}=F(s)$ | |
\item $\mathscr{L}\{f'(t)\} = S\mathscr{L}\{f(t)\}-f(0)$ | |
\item $\mathscr{L}\{f''(t)\} = S^2\mathscr{L}\{f(t)\}-Sf(0)-f'(0)$ | |
\end{enumerate} | |
\section{Problemas propuestos} | |
\subsection{$y' - 3y = \delta(t-2) ; y_{(0)} = 0$} | |
\begin{enumerate} | |
\item Aplicamos Laplace a todos los miembros: \\ | |
$s\mathscr{L}\{f(t)\} - f_{(0)} - 3\mathscr{L}\{f(t)\} = e^{-2s} $ | |
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\ | |
$\mathscr{L}\{f(t)\}(s-3) = e^{-2s}$ | |
\item Despejamos \\ | |
$\mathscr{L}\{f(t)\} = \frac{e^{-2s}}{s-3}$ \\ | |
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\ | |
$f(t) = \mu(t-2)\mathscr{L}^{-1} (\frac{1}{s-3})_{t\to(t-2)}$ | |
\item Resolvermos \\ | |
$f(t) = \mu(t-2)e^{3(t-2)}$ | |
\end{enumerate} | |
\subsection{$y' + y = \delta(t-1) ; y_{(0)} = 2$} | |
\begin{enumerate} | |
\item Aplicamos Laplace a todos los miembros: \\ | |
$s\mathscr{L}\{f(t)\} - f_{(0)} + \mathscr{L}\{f(t)\} = e^{-s} $ | |
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\ | |
$\mathscr{L}\{f(t)\}(s+1) - 2= e^{-s}$ | |
\item Despejamos \\ | |
$\mathscr{L}\{f(t)\} = \frac{e^{-s}+2}{s+1}$ \\ | |
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\ | |
$f(t) = \mathscr{L}^{-1} (\frac{e^{-s}}{s+1}) + 2\mathscr{L}^{-1} (\frac{1}{s+1}) $\\ | |
$f(t) = \mu(t-1)\mathscr{L}^{-1} (\frac{1}{s+1})_{t\to(t-1)} + 2e^{-t}$ | |
\item Resolvermos \\ | |
$f(t) = \mu(t-1)e^{-(t-1)} + 2e^{-t}$ | |
\end{enumerate} | |
\subsection{$y'' + y = \delta(t-2\pi) ; y_{(0)} = 0, y'_{(0)} = 1$} | |
\begin{enumerate} | |
\item Aplicamos Laplace a todos los miembros: \\ | |
$s^2\mathscr{L}\{f(t)\} - sf_{(0)} - f'_{(0)} + \mathscr{L}\{f(t)\} = e^{-2\pi s } $ | |
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\ | |
$\mathscr{L}\{f(t)\}(s^2+1) - 1= e^{-2\pi s}$ | |
\item Despejamos \\ | |
$\mathscr{L}\{f(t)\} = \frac{e^{-2\pi s}+1}{s^2+1}$ \\ | |
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\ | |
$f(t) = \mathscr{L}^{-1} (\frac{e^{-2\pi s}}{s^2+1}) + \mathscr{L}^{-1} (\frac{1}{s^2+1}) $\\ | |
$f(t) = \mu(t-2\pi)\mathscr{L}^{-1} (\frac{1}{s^2+1})_{t\to(t-2\pi)} + sen(t)$ | |
\item Resolvermos \\ | |
$f(t) = \mu(t-2\pi)sen(t-2\pi) + sen(t)$ | |
\end{enumerate} | |
\subsection{$y'' + 16y = \delta(t-2\pi) ; y_{(0)} = 0, y'_{(0)} = 1$} | |
\begin{enumerate} | |
\item Aplicamos Laplace a todos los miembros: \\ | |
$s^2\mathscr{L}\{f(t)\} - sf_{(0)} - f'_{(0)} + 16\mathscr{L}\{f(t)\} = e^{-2\pi s } $ | |
\item Factorizamos $\mathscr{L}\{f(t)\}$ \\ | |
$\mathscr{L}\{f(t)\}(s^2+16)= e^{-2\pi s}$ | |
\item Despejamos \\ | |
$\mathscr{L}\{f(t)\} = \frac{e^{-2\pi s}}{s^2+16}$ \\ | |
\item Aplicamos Laplace inversa ($\mathscr{L}\{f(t)\}^{-1}$) \\ | |
$f(t) = \mu(t-2\pi)\mathscr{L}^{-1} (\frac{1}{s^2+16})_{t\to(t-2\pi)}$ | |
\item Resolvermos \\ | |
$f(t) = \mu(t-2\pi)sen(4(t-2\pi))$ | |
\end{enumerate} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment