Last active
August 19, 2020 19:45
-
-
Save juanchiem/8a8385780e14abe57400785cb4c87c78 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://itsalocke.com/blog/understanding-rolling-calculations-in-r/ | |
# https://inta.gob.ar/sites/default/files/inta_impacto_de_los_factores_ambientales_en_la_definicion_de_los_rendimientos_de_los_cultivos_resultados_de_la_campana_2013_de_trigo.pdf | |
# http://rafaela.inta.gov.ar/info/miscelaneas/101/trigo2004_n1.pdf | |
pacman::p_load(tidyverse, lubridate, zoo) | |
stations <- tibble::tribble( | |
~station, ~lat, ~lon, | |
"Balcarce INTA", -37.75, -58.3, | |
"Mar del Plata AERO", -37.93, -57.58, | |
"Azul AERO", -36.83, -59.88, | |
"Benito Juarez AERO", -37.72, -59.78, | |
"Laprida", -37.57, -60.77, | |
"Barrow INTA", -38.32, -60.25, | |
"TANDIL AERO", -37.23, -59.25 | |
) %>% arrange(station) | |
dates <- seq.Date(lubridate::dmy("1-8-2019"), lubridate::dmy("30-12-2019"), by = "1 day") | |
temp <- metR::GetSMNData(dates, type = "daily", bar = TRUE) | |
rad <- nasapower::get_power( | |
community = "AG", | |
lonlat = as.vector(unlist(stations[7,-1])), | |
pars = c("ALLSKY_SFC_SW_DWN"), | |
dates = c(min(dates), max(dates)), | |
temporal_average = "DAILY" | |
) | |
tandil <- rad %>% | |
rename(date = YYYYMMDD, rad = ALLSKY_SFC_SW_DWN) %>% | |
left_join(temp %>% | |
filter(station == "TANDIL AERO") %>% | |
mutate(date = as.Date(date))) %>% | |
# mutate(rfa = rad*0.5, | |
# q = rfa/((tmax + tmin)/2)) %>% | |
select(date, tmin, tmax, rad) | |
tandil %>% tail | |
tandil %>% | |
ggplot(aes( | |
# date, | |
seq(1, length(rad)), | |
rad))+ | |
geom_line()+ geom_rug(sides="b") -> p1 | |
p1 | |
filtro <- tibble(y = pracma::hampel(tandil$rad, 5, 3)$y) | |
p1 + geom_point(data = filtro, | |
aes(x = seq(1, length(y)), y = y), | |
col = "darkred") | |
tandil <- tandil %>% | |
mutate(tmean = (tmax + tmin)/2, | |
rad_y = filtro$y, | |
q = rad_y*0.5/tmean-4.5) | |
tandil %>% | |
ggplot(aes(date, q))+ | |
# geom_line()+ | |
geom_quantile(quantiles = c(0.5), | |
formula = NULL, | |
method = "rqss") | |
# geom_line(data = . %>% | |
# mutate(q = zoo::rollmean(q, 2, align = "right", fill = NA)), | |
# col = "darkred") | |
tandil %>% | |
filter(month(date) %in% 10:12) %>% | |
group_by(date=if_else(day(date) >= 30, | |
floor_date(date, "20 days"), | |
floor_date(date, "10 days"))) %>% | |
summarize(q10 = mean(q), | |
days = n()) ->tan_q | |
tandil <- | |
tandil %>% | |
# mutate(q_pc = rollapply(q, width = list(-20:10), mean, | |
# align = "center", | |
# fill = NA, | |
# na.rm = T)) | |
mutate(tmean_pc = rollapply(tmean, width = list(-20:10), mean, | |
align = "center", | |
fill = NA, | |
na.rm = T)-4.5, | |
rad_pc = rollapply(rad_y*0.5, | |
width = list(-20:10), mean, | |
align = "center", | |
fill = NA, | |
na.rm = T), | |
q = rad_pc/tmean_pc) | |
# saveRDS(nasa, here::here("meteo", paste0(id_trial,"_nasa.rds"))) | |
tandil %>% | |
rename("q10" = q) %>% | |
ggplot(aes(date, q10))+ | |
geom_line()+ | |
# geom_quantile(quantiles = c(0.5), | |
# formula = NULL, | |
# method = "rqss") + | |
geom_point(data = tan_q, aes(x = date, y = q10)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment