Last active
April 14, 2023 04:27
-
-
Save julesghub/e7619fec0373e8d366e0f6e9afa5ba5b to your computer and use it in GitHub Desktop.
h5py IO issue
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash -l | |
#SBATCH --account=pawsey0407 | |
#SBATCH --job-name=uw2141-1_32 | |
#SBATCH --ntasks=4 | |
#SBATCH --cpus-per-task=1 # OMP_NUM_THREADS equivalent | |
#SBATCH --time=01:00:00 | |
#SBATCH --export=none | |
# load Singularity | |
module load singularity/3.8.6 | |
# Define the container to use | |
export pawseyRepository=/scratch/pawsey0407/jgiordani/myimages/ | |
export containerImage=$pawseyRepository/underworld2-mpich_latest.sif | |
export model="UW_SETONIX_TEST.py" | |
# ## uncomment for the setonix pure h5py test ## | |
# export containerImage=$pawseyRepository/hpc-python_2022.03-hdf5mpi.sif | |
# export model="parallel_write.py" | |
# as per | |
# https://support.pawsey.org.au/documentation/pages/viewpage.action?pageId=116131367#UsewithSingularity-RunningPythonandR | |
# we unset all the host python-related ENV vars | |
unset $( env | grep ^PYTHON | cut -d = -f 1 | xargs ) | |
# execute | |
srun --export=all -u -n $SLURM_NTASKS singularity exec -B ${PWD}:/work $containerImage bash -c "cd /work/; python3 $model" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Test script for h5py IO write. | |
Output should be a file called 'foo.h5' with a | |
(10 x nprocs) array of random number labelled 'bar' | |
""" | |
import h5py | |
import numpy as np | |
from mpi4py import MPI | |
comm = MPI.COMM_WORLD | |
rank = comm.rank | |
size = comm.size | |
if rank == 0: | |
print(MPI.Get_library_version()) | |
h5f = h5py.File("foo.h5", mode="w", driver="mpio", comm=comm) | |
dset = h5f.create_dataset('bar', (10, size), dtype='f') | |
# parallel columns | |
dset[:, rank] = np.random.rand(10) | |
h5f.close() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash -l | |
module load python/3.9.15 py-mpi4py/3.1.2-py3.9.15 py-numpy/1.20.3 py-h5py/3.4.0 py-cython/0.29.24 | |
export OPT_DIR=/software/projects/pawsey0407/setonix/ | |
## for modifying the venv | |
# source $OPT_DIR/py39/bin/activate | |
# for using the venv | |
export PYTHONPATH=$OPT_DIR/py39/lib/python3.9/site-packages:$PYTHONPATH | |
# For development only | |
export PETSC_DIR=$OPT_DIR/petsc-3.18.1 | |
export PYTHONPATH=$PETSC_DIR/:$PYTHONPATH | |
export PYTHONPATH=/software/projects/pawsey0407/setonix/underworld/2.14.2/lib/python3.9/site-packages/:$PYTHONPATH |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# coding: utf-8 | |
##from underworld.UWGeodynamics.surfaceProcesses import SedimentationThreshold | |
##from UWGeodynamics import visualisation as vis | |
import underworld as uw | |
from underworld import UWGeodynamics as GEO | |
from underworld import function as fn | |
import numpy as np | |
##from UWGeodynamics import visualisation as vis | |
#import scipy | |
#import os.path | |
#from mpi4py import MPI | |
#import argparse | |
#import math | |
GEO.__version__ | |
u = GEO.UnitRegistry | |
plotting_bool = False | |
resolution = (96, 48) | |
#resolution = (768, 384) -- original resolution by Patrice | |
#resolution_setting_up = (768,384) | |
half_rate = 1.25 * u.centimeter / u.year | |
model_length = 1536e3 * u.meter | |
surfaceTemp = 293.15 * u.kelvin | |
baseModelTemp = 1673.15 * u.kelvin | |
bodyforce = 3370 * u.kilogram / u.metre**3 * 9.81 * u.meter / u.second**2 | |
KL = model_length | |
Kt = KL / half_rate | |
KM = bodyforce * KL**2 * Kt**2 | |
KT = (baseModelTemp - surfaceTemp) | |
GEO.scaling_coefficients["[length]"] = KL | |
GEO.scaling_coefficients["[time]"] = Kt | |
GEO.scaling_coefficients["[mass]"]= KM | |
GEO.scaling_coefficients["[temperature]"] = KT | |
Model = GEO.Model(elementRes = resolution, | |
minCoord = (0. * u.kilometer, -720. * u.kilometer), | |
maxCoord = (1536. * u.kilometer, 48. * u.kilometer), | |
periodic = [False, False], | |
gravity = (0.0, -9.81 * u.meter / u.second**2)) | |
Model.outputDir = "Col230" | |
Model.diffusivity = 1e-6 * u.metre**2 / u.second | |
Model.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Model.minViscosity = 2e18 * u.pascal * u.second | |
Model.maxViscosity = 2e22 * u.pascal * u.second | |
#Calling registry objects. | |
rh = GEO.ViscousCreepRegistry() | |
pl = GEO.PlasticityRegistry() | |
solidii = GEO.SolidusRegistry() | |
liquidii = GEO.LiquidusRegistry() | |
#Defining Air Layer and its properties | |
Air_Object = Model.add_material(name="Air", shape=GEO.shapes.Layer(top=Model.top, bottom = (24.0 * u.kilometer))) | |
Air_Object.density = 1. * u.kilogram / u.metre**3 | |
Air_Object.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
Air_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Air_Object.capacity = 100. * u.joule / (u.kelvin * u.kilogram) | |
Air_Object.viscosity = 5e18 * u.pascal * u.second | |
Air_Object.compressibility = 1e4 # 1.e4 seems to be a good value, nb: Compressibility should be zero when using Lecode isostasy | |
#Defining Air Layer and its properties | |
Sticky_Air_Object = Model.add_material(name="Sticky Air", shape=GEO.shapes.Layer(top=Air_Object.bottom, bottom = (-5.0 * u.kilometer))) | |
Sticky_Air_Object.density = 1. * u.kilogram / u.metre**3 | |
Sticky_Air_Object.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
Sticky_Air_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Sticky_Air_Object.capacity = 100. * u.joule / (u.kelvin * u.kilogram) | |
Sticky_Air_Object.viscosity = 5e19 * u.pascal * u.second | |
Sticky_Air_Object.compressibility = 1e4 # 1.e4 seems to be a good value, nb: Compressibility should be zero when using Lecode isostasy | |
# + | |
# #Eclogitized oceanic material phase change object | |
Eclogite_Object = Model.add_material(name = "Eclogitized Oceanic Material") | |
Eclogite_Object.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
Eclogite_Object.density = 3500 * u.kilogram / u.metre**3 | |
Eclogite_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Eclogite_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Eclogite_Object.viscosity = 5e19 * u.pascal * u.second #0.1 * rh.Wet_Olivine_Dislocation_Hirth_and_Kohlstedt_2003 | |
# - | |
#Lithospheric Mantle Layer | |
Lithospheric_Mantle_Object = Model.add_material(name="Lithospheric Mantle", | |
shape=GEO.shapes.Layer(top=Sticky_Air_Object.bottom, bottom = (-155.0 * u.kilometer))) | |
#Lithospheric_Mantle_Object.density = 3395 * u.kilogram / u.metre**3 | |
Lithospheric_Mantle_Object.density = GEO.LinearDensity(reference_density=3395. * u.kilogram / u.metre**3, | |
thermalExpansivity= 2.8e-5 * u.kelvin**-1) | |
Lithospheric_Mantle_Object.radiogenicHeatProd = 0.02e-6 * u.watt / u.meter**3 | |
Lithospheric_Mantle_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Lithospheric_Mantle_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
#Lithospheric_Mantle_Object.viscosity = rh.Wet_Olivine_Dislocation_Hirth_and_Kohlstedt_2003 | |
#Lithospheric_Mantle_Object.viscosity = rh.Wet_Olivine_Diffusion_Hirth_and_Kohlstedt_2003 | |
Lithospheric_Mantle_Object.viscosity = GEO.CompositeViscosity([rh.Wet_Olivine_Dislocation_Hirth_and_Kohlstedt_2003, rh.Wet_Olivine_Diffusion_Hirth_and_Kohlstedt_2003]) | |
Lithospheric_Mantle_Object.add_melt_modifier(solidii.Mantle_Solidus, liquidii.Mantle_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.02, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.00, | |
viscosityChangeX2 = 0.02, | |
viscosityChange = 1e-2) | |
#Lithospheric_Mantle_Object.plasticity = pl.Rey_et_al_2014_LithosphericMantle | |
Lithospheric_Mantle_Object.plasticity = GEO.DruckerPrager(name="Lithospheric mantle", | |
cohesion=50. * u.megapascal, | |
cohesionAfterSoftening=10 * u.megapascal, | |
frictionCoefficient=0.577, | |
frictionAfterSoftening=0.15, | |
epsilon1=0.0, epsilon2=0.15) | |
Lithospheric_Mantle_Object.elasticity = GEO.Elasticity(shear_modulus=40e9 * u.pascal, observation_time=20000 * u.year) | |
Lithospheric_Mantle_Object.stressLimiter = 200. * u.megapascal #does this work same here? Not sure what to enter on stress= ? | |
#Asthenospheric Mantle | |
Asthenospheric_Mantle_Object = Model.add_material(name="Asthenospheric Mantle", shape=GEO.shapes.Polygon([ | |
(0. * u.kilometer,-140. * u.kilometer), | |
(42. * u.kilometer,-139.5 * u.kilometer), | |
(90. * u.kilometer, -139 * u.kilometer), | |
(112. * u.kilometer,-138.5 * u.kilometer), | |
(132. * u.kilometer,-137.7 * u.kilometer), | |
(150. * u.kilometer,-136.5 * u.kilometer), | |
(168. * u.kilometer,-134.1 * u.kilometer), | |
(184. * u.kilometer,-129.9 * u.kilometer), | |
(198. * u.kilometer,-123.5 * u.kilometer), | |
(210. * u.kilometer,-116.2 * u.kilometer), | |
(222. * u.kilometer,-108.1 * u.kilometer), | |
(234. * u.kilometer,-99.7 * u.kilometer), | |
(246. * u.kilometer,-91.8 * u.kilometer), | |
(260. * u.kilometer,-85.7 * u.kilometer), | |
(278. * u.kilometer,-83.9 * u.kilometer), | |
(298. * u.kilometer,-83.4 * u.kilometer), | |
(318. * u.kilometer,-83.2 * u.kilometer), | |
(452. * u.kilometer,-83.4 * u.kilometer), | |
(474. * u.kilometer,-84.1 * u.kilometer), | |
(492. * u.kilometer,-86.2 * u.kilometer), | |
(503.3 * u.kilometer,-95. * u.kilometer), | |
(510.1 * u.kilometer,-107. * u.kilometer), | |
(520. * u.kilometer,-117.1 * u.kilometer), | |
(534. * u.kilometer,-124 * u.kilometer), | |
(550. * u.kilometer,-127.4 * u.kilometer), | |
(570. * u.kilometer,-127.3 * u.kilometer), | |
(586. * u.kilometer,-123.6 * u.kilometer), | |
(600. * u.kilometer,-118.1 * u.kilometer), | |
(614. * u.kilometer,-111.4 * u.kilometer), | |
(628. * u.kilometer,-107. * u.kilometer), | |
(648. * u.kilometer,-105.2 * u.kilometer), | |
(678. * u.kilometer,-104.7 * u.kilometer), | |
(1522. * u.kilometer,-104.7 * u.kilometer), | |
(1536. * u.kilometer,-104.7 * u.kilometer), | |
(1536. * u.kilometer,-720. * u.kilometer), | |
(0. * u.kilometer,-720. * u.kilometer), | |
(0. * u.kilometer,-140. * u.kilometer)])) | |
#Asthenospheric_Mantle_Object.density = 3395 * u.kilogram / u.metre**3 | |
Asthenospheric_Mantle_Object.density = GEO.LinearDensity(reference_density=3395. * u.kilogram / u.metre**3, | |
thermalExpansivity= 3.5e-5 * u.kelvin**-1) | |
Asthenospheric_Mantle_Object.radiogenicHeatProd = 0.02e-6 * u.watt / u.meter**3 | |
Asthenospheric_Mantle_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Asthenospheric_Mantle_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Asthenospheric_Mantle_Object.viscosity = 1e20 * u.pascal * u.second #Newtonian? | |
Asthenospheric_Mantle_Object.add_melt_modifier(solidii.Mantle_Solidus, liquidii.Mantle_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.02, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.01, | |
viscosityChangeX2 = 0.03, | |
viscosityChange = 1e-2) | |
#Asthenospheric_Mantle_Object.plasticity = pl.Rey_et_al_2014_LithosphericMantle | |
Asthenospheric_Mantle_Object.plasticity = GEO.DruckerPrager(name="Asthenosphere", | |
cohesion=50. * u.megapascal, | |
cohesionAfterSoftening=10 * u.megapascal, | |
frictionCoefficient=0.577, | |
frictionAfterSoftening=0.15, | |
epsilon1=0.0, epsilon2=0.15) | |
Asthenospheric_Mantle_Object.stressLimiter = 200. * u.megapascal | |
Mantle_Wedge_Object = Model.add_material(name="Mantle Wedge", shape=GEO.shapes.Polygon([ | |
(444 * u.kilometer,-83.4 * u.kilometer), | |
(474 * u.kilometer,-84.1 * u.kilometer), | |
(492 * u.kilometer,-86.2 * u.kilometer), | |
(499 * u.kilometer,-91 * u.kilometer), | |
(584 * u.kilometer,-5 * u.kilometer), | |
(414 * u.kilometer,-5 * u.kilometer)])) | |
#Mantle_Wedge_Object.density = 3370 * u.kilogram / u.metre**3 | |
Mantle_Wedge_Object.density = GEO.LinearDensity(reference_density=3370. * u.kilogram / u.metre**3, | |
thermalExpansivity= 7.5e-5 * u.kelvin**-1) | |
Mantle_Wedge_Object.radiogenicHeatProd = 0.02e-6 * u.watt / u.meter**3 | |
Mantle_Wedge_Object.diffusivity = 7.5e-7 * u.metre**2 / u.second | |
Mantle_Wedge_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
#Mantle_Wedge_Object.viscosity = GEO.CompositeViscosity([0.01 * rh.Wet_Olivine_Dislocation_Hirth_and_Kohlstedt_2003, 0.01 *rh.Wet_Olivine_Diffusion_Hirth_and_Kohlstedt_2003]) | |
Mantle_Wedge_Object.viscosity = 6e20 * u.pascal * u.second | |
Mantle_Wedge_Object.add_melt_modifier(solidii.Mantle_Solidus, liquidii.Mantle_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.08, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.02, | |
viscosityChangeX2 = 0.08, | |
viscosityChange = 1e-2) | |
Mantle_Wedge_Object.plasticity = pl.Rey_et_al_2014_LithosphericMantle | |
Mantle_Wedge_Object.stressLimiter = 100. * u.megapascal | |
#Oceanic Sediment Layer | |
Oceanic_Sediment = Model.add_material(name="Oceanic Sediment", shape=GEO.shapes.Polygon([ | |
(384 * u.kilometer,-5 * u.kilometer), | |
(852 * u.kilometer,-5 * u.kilometer), | |
(854 * u.kilometer,-6 * u.kilometer), | |
(382 * u.kilometer,-6 * u.kilometer)])) | |
Oceanic_Sediment.density = 2900 * u.kilogram / u.metre**3 | |
Oceanic_Sediment.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
Oceanic_Sediment.diffusivity = 1e-6 * u.metre**2 / u.second | |
Oceanic_Sediment.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Oceanic_Sediment.viscosity = 1e20 * u.pascal * u.second | |
Oceanic_Sediment.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion= 250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0, | |
meltFractionLimit=1., | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Oceanic_Sediment.stressLimiter = 10. * u.megapascal | |
#Oceanic Upper-Crust | |
Oceanic_Upper_Crust = Model.add_material(name="Oceanic Upper-Crust", shape=GEO.shapes.Polygon([ | |
(384 * u.kilometer,-5 * u.kilometer), | |
(852 * u.kilometer,-5 * u.kilometer), | |
(858 * u.kilometer,-11 * u.kilometer), | |
(378 * u.kilometer,-11 * u.kilometer)])) | |
Oceanic_Upper_Crust.density = 2900 * u.kilogram / u.metre**3 | |
Oceanic_Upper_Crust.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
Oceanic_Upper_Crust.diffusivity = 1e-6 * u.metre**2 / u.second | |
Oceanic_Upper_Crust.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Oceanic_Upper_Crust.viscosity = 1 * rh.Dry_Maryland_Diabase_Dislocation_Mackwell_et_al_1998 | |
Oceanic_Upper_Crust.plasticity = pl.Rey_et_al_2014_UpperCrust | |
Oceanic_Upper_Crust.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion= 250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0, | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Oceanic_Upper_Crust.stressLimiter = 300. * u.megapascal | |
# + | |
# #Oceanic Lower-Crust (This wasn't in the file?) | |
# Oceanic_Lower_Crust = Model.add_material(name="Oceanic Lower-Crust", shape=GEO.shapes.Polygon([ | |
# (586 * u.kilometer,-13 * u.kilometer), | |
# (1536 * u.kilometer,-13 * u.kilometer), | |
# (1536 * u.kilometer,-20 * u.kilometer), | |
# (577 * u.kilometer,-20 * u.kilometer)])) | |
# Oceanic_Lower_Crust.density = 3200 * u.kilogram / u.metre**3 | |
# Oceanic_Lower_Crust.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
# Oceanic_Lower_Crust.diffusivity = 1e-6 * u.metre**2 / u.second | |
# Oceanic_Lower_Crust.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
# Oceanic_Lower_Crust.viscosity = 2e21 * u.pascal * u.second | |
# Oceanic_Lower_Crust.plasticity = pl.Rey_et_al_2014_LowerCrust | |
# Oceanic_Lower_Crust.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
# latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
# meltFraction=0.2, | |
# meltFractionLimit=0.3, | |
# meltExpansion=0.13, | |
# viscosityChangeX1 = 0.15, | |
# viscosityChangeX2 = 0.30, | |
# viscosityChange = 1e-3) | |
# Oceanic_Lower_Crust.stressLimiter = 150. * u.megapascal | |
# - | |
#Continental Upper-Crust_Layer | |
Continental_Upper_Crust_UP_Object = Model.add_material(name="Continental Upper Crust Upper Plate", shape=GEO.shapes.Polygon([ | |
(0 * u.kilometer, 1 * u.kilometer), | |
(350 * u.kilometer, 1 * u.kilometer), | |
(384 * u.kilometer, -5 * u.kilometer), | |
(350 * u.kilometer,-39 * u.kilometer), | |
(0 * u.kilometer,-39 * u.kilometer)])) | |
#Continental_Upper_Crust_Object.density = 2580 * u.kilogram / u.metre**3 | |
Continental_Upper_Crust_UP_Object.density = GEO.LinearDensity(reference_density=2580. * u.kilogram / u.metre**3, | |
thermalExpansivity= 2.8e-5 * u.kelvin**-1) | |
Continental_Upper_Crust_UP_Object.radiogenicHeatProd = 1.5e-6 * u.watt / u.meter**3 | |
Continental_Upper_Crust_UP_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Continental_Upper_Crust_UP_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Continental_Upper_Crust_UP_Object.viscosity = 1.0 * rh.Wet_Quartz_Dislocation_Paterson_and_Luan_1990 | |
#Continental_Upper_Crust_UP_Object.plasticity = pl.Rey_et_al_2014_UpperCrust | |
Continental_Upper_Crust_UP_Object.plasticity = GEO.DruckerPrager(name="Continental Upper Crust", | |
cohesion=5. * u.megapascal, | |
cohesionAfterSoftening=1. * u.megapascal, | |
frictionCoefficient=0.54, | |
frictionAfterSoftening=0.011, | |
epsilon1=0.0, epsilon2=0.15) | |
Continental_Upper_Crust_UP_Object.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Continental_Upper_Crust_UP_Object.stressLimiter = 100. * u.megapascal | |
#Continental Lower Crust upper plate | |
Continental_Lower_Crust_UP_Object = Model.add_material(name="Continental Lower Crust Upper Plate", shape=GEO.shapes.Polygon([ | |
(0 * u.kilometer,-15 * u.kilometer), | |
(374 * u.kilometer,-15 * u.kilometer), | |
(350 * u.kilometer,-39 * u.kilometer), | |
(0 * u.kilometer,-39 * u.kilometer)])) | |
#Continental_Lower_Crust_UP_Object.density = 2750 * u.kilogram / u.metre**3 | |
Continental_Lower_Crust_UP_Object.density = GEO.LinearDensity(reference_density=2750. * u.kilogram / u.metre**3, | |
thermalExpansivity= 2.8e-5 * u.kelvin**-1) | |
Continental_Lower_Crust_UP_Object.radiogenicHeatProd = 0.5e-6 * u.watt / u.meter**3 | |
Continental_Lower_Crust_UP_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Continental_Lower_Crust_UP_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Continental_Lower_Crust_UP_Object.viscosity = 1 * rh.Dry_Mafic_Granulite_Dislocation_Wang_et_al_2012 | |
Continental_Lower_Crust_UP_Object.plasticity = pl.Rey_et_al_2014_LowerCrust | |
Continental_Lower_Crust_UP_Object.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion= 250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0.0, | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Continental_Lower_Crust_UP_Object.stressLimiter = 150. * u.megapascal | |
# Decollement upper plate | |
Decollement_UP = Model.add_material(name="Decollement Upper Plate", shape=GEO.shapes.Polygon([ | |
(0 * u.kilometer,-15 * u.kilometer), | |
(374 * u.kilometer,-15 * u.kilometer), | |
(372 * u.kilometer,-17 * u.kilometer), | |
(0 * u.kilometer,-17 * u.kilometer)])) | |
Decollement_UP.density = 2650 * u.kilogram / u.metre**3 | |
Decollement_UP.radiogenicHeatProd = 1.5e-6 * u.watt / u.meter**3 | |
Decollement_UP.diffusivity = 1e-6 * u.metre**2 / u.second | |
Decollement_UP.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Decollement_UP.viscosity = 0.1 * rh.Wet_Quartz_Dislocation_Paterson_and_Luan_1990 | |
Decollement_UP.plasticity = GEO.DruckerPrager(name="Decollement UP", | |
cohesion=1. * u.megapascal, | |
cohesionAfterSoftening=0.1 * u.megapascal, | |
frictionCoefficient=0.2, | |
frictionAfterSoftening=0.011, | |
epsilon1=0.0, epsilon2=0.15) | |
Decollement_UP.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Decollement_UP.stressLimiter = 30. * u.megapascal | |
# - | |
# Upper crust lower plate | |
Continental_Upper_Crust_LP_Object = Model.add_material(name="Continental Upper Crust Lower Plate", shape=GEO.shapes.Polygon([ | |
(852 * u.kilometer, -5 * u.kilometer), | |
(1052 * u.kilometer, 1 * u.kilometer), | |
(1536 * u.kilometer, 1 * u.kilometer), | |
(1536 * u.kilometer,-15 * u.kilometer), | |
(1052 * u.kilometer,-15 * u.kilometer), | |
(858 * u.kilometer,-11 * u.kilometer)])) | |
#Continental_Upper_Crust_LP_Object.density = 2580 * u.kilogram / u.metre**3 | |
Continental_Upper_Crust_LP_Object.density = GEO.LinearDensity(reference_density=2580. * u.kilogram / u.metre**3, | |
thermalExpansivity= 2.8e-5 * u.kelvin**-1) | |
Continental_Upper_Crust_LP_Object.radiogenicHeatProd = 1.5e-6 * u.watt / u.meter**3 | |
Continental_Upper_Crust_LP_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Continental_Upper_Crust_LP_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Continental_Upper_Crust_LP_Object.viscosity = 1.0 * rh.Wet_Quartz_Dislocation_Paterson_and_Luan_1990 | |
#Continental_Upper_Crust_LP_Object.plasticity = pl.Rey_et_al_2014_UpperCrust | |
Continental_Upper_Crust_LP_Object.plasticity = GEO.DruckerPrager(name="Continental Upper Crust", | |
cohesion=5. * u.megapascal, | |
cohesionAfterSoftening=1. * u.megapascal, | |
frictionCoefficient=0.54, | |
frictionAfterSoftening=0.011, | |
epsilon1=0.0, epsilon2=0.15) | |
Continental_Upper_Crust_LP_Object.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Continental_Upper_Crust_LP_Object.stressLimiter = 100. * u.megapascal | |
# Lower crust lower plate | |
Continental_Lower_Crust_LP_Object = Model.add_material(name="Continental Lower Crust Lower Plate", shape=GEO.shapes.Polygon([ | |
(858 * u.kilometer, -11 * u.kilometer), | |
(1052 * u.kilometer,-39 * u.kilometer), | |
(1536 * u.kilometer,-39 * u.kilometer), | |
(1536 * u.kilometer, -15 * u.kilometer), | |
(1052 * u.kilometer, -15 * u.kilometer)])) | |
#Continental_Lower_Crust_LP_Object.density = 2750 * u.kilogram / u.metre**3 | |
Continental_Lower_Crust_LP_Object.density = GEO.LinearDensity(reference_density=2750. * u.kilogram / u.metre**3, | |
thermalExpansivity= 2.8e-5 * u.kelvin**-1) | |
Continental_Lower_Crust_LP_Object.radiogenicHeatProd = 0.5e-6 * u.watt / u.meter**3 | |
Continental_Lower_Crust_LP_Object.diffusivity = 1e-6 * u.metre**2 / u.second | |
Continental_Lower_Crust_LP_Object.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Continental_Lower_Crust_LP_Object.viscosity = 1 * rh.Dry_Maryland_Diabase_Dislocation_Mackwell_et_al_1998 | |
Continental_Lower_Crust_LP_Object.plasticity = pl.Rey_et_al_2014_LowerCrust | |
Continental_Lower_Crust_LP_Object.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion= 250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0.0, | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Continental_Lower_Crust_LP_Object.stressLimiter = 150. * u.megapascal | |
# Decollement lower plate | |
Decollement_LP = Model.add_material(name="Decollement lower plate", shape=GEO.shapes.Polygon([ | |
(885 * u.kilometer,-15 * u.kilometer), | |
(910 * u.kilometer,-17 * u.kilometer), | |
(1536 * u.kilometer,-17 * u.kilometer), | |
(1536 * u.kilometer,-15 * u.kilometer)])) | |
Decollement_LP.density = 2650 * u.kilogram / u.metre**3 | |
Decollement_LP.radiogenicHeatProd = 1.5e-6 * u.watt / u.meter**3 | |
Decollement_LP.diffusivity = 1e-6 * u.metre**2 / u.second | |
Decollement_LP.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Decollement_LP.viscosity = 0.1 * rh.Wet_Quartz_Dislocation_Paterson_and_Luan_1990 | |
Decollement_LP.plasticity = GEO.DruckerPrager(name="Decollement LP", | |
cohesion=1. * u.megapascal, | |
cohesionAfterSoftening=0.1 * u.megapascal, | |
frictionCoefficient=0.2, | |
frictionAfterSoftening=0.011, | |
epsilon1=0.0, epsilon2=0.15) | |
Decollement_LP.add_melt_modifier(solidii.Crustal_Solidus, liquidii.Crustal_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.3, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.15, | |
viscosityChangeX2 = 0.30, | |
viscosityChange = 1e-3) | |
Decollement_LP.stressLimiter = 30. * u.megapascal | |
#Benioff faultt | |
Fault = Model.add_material(name="Faulted Crust", shape=GEO.shapes.Polygon([ | |
(579 * u.kilometer,-11 * u.kilometer), | |
(589 * u.kilometer,-11 * u.kilometer), | |
(504 * u.kilometer,-96 * u.kilometer), | |
(499 * u.kilometer,-91 * u.kilometer)])) | |
#Faulted_Crust.density = 3395 * u.kilogram / u.metre**3 | |
Fault.density = GEO.LinearDensity(reference_density=3395. * u.kilogram / u.metre**3, | |
thermalExpansivity= 2.8e-5 * u.kelvin**-1) | |
Fault.radiogenicHeatProd = 0.0 * u.watt / u.meter**3 | |
Fault.diffusivity = 1e-6 * u.metre**2 / u.second | |
Fault.capacity = 1000. * u.joule / (u.kelvin * u.kilogram) | |
Fault.viscosity = 5e19 * u.pascal * u.second | |
#Fault.viscosity = 0.02 * rh.Wet_Olivine_Dislocation_Hirth_and_Kohlstedt_2003 | |
#Fault.plasticity = pl.Rey_et_al_2014_LithosphericMantle | |
Fault.plasticity = GEO.DruckerPrager(name="Faulted Mantle", | |
cohesion=15. * u.megapascal, | |
cohesionAfterSoftening=1.5 * u.megapascal, | |
frictionCoefficient=0.577, | |
frictionAfterSoftening=0.011, | |
epsilon1=0.0, epsilon2=0.15) | |
Fault.stressLimiter = 25. * u.megapascal | |
Fault.add_melt_modifier(solidii.Mantle_Solidus, liquidii.Mantle_Liquidus, | |
latentHeatFusion=250.0 * u.kilojoules / u.kilogram / u.kelvin, | |
meltFraction=0., | |
meltFractionLimit=0.02, | |
meltExpansion=0.13, | |
viscosityChangeX1 = 0.00, | |
viscosityChangeX2 = 0.02, | |
viscosityChange = 1e-3) | |
#=========================== | |
# Damage oceanic lithosphere | |
#=========================== | |
#def gaussian(zz, centre, widthx): | |
# return ( np.exp( -(zz - centre)**2 / widthx )) | |
#widthz = GEO.nd(48.0 * u.kilometer) # width of the damaged region along z, for a normal distribution twice as large | |
#widthx = GEO.nd(480. * u.kilometer) # width of the damaged region along x, for a normal distribution twice as large | |
#maxDamage = 0.5 | |
#angle = 0.0 # tan(degree*2*pi/360): (10>0.176327, 20>0.3639702, 30>0.5773503, 40>0.8390996, 45>1, 50>1.191754, 60>1.732051, 70>2.747477, 80>5.671282) | |
#centre = angle * Model.swarm.particleCoordinates.data[:,1] + (((GEO.nd(640. * u.kilometer)-angle*(widthz/2)))) | |
#Model.plasticStrain.data[:] = maxDamage * np.random.rand(*Model.plasticStrain.data.shape[:]) | |
#Model.plasticStrain.data[:,0] *= gaussian(Model.swarm.particleCoordinates.data[:,0], centre , widthx) | |
#Model.plasticStrain.data[:,0] *= gaussian(Model.swarm.particleCoordinates.data[:,1], GEO.nd(-3. * u.kilometer), widthz*100) | |
#Air_Object_mask = Model.swarm.particleCoordinates.data[:,1] > GEO.nd(-5 * u.kilometer) | |
#Model.plasticStrain.data[Air_Object_mask] = 0.0 | |
#noncrust_mask2 = Model.swarm.particleCoordinates.data[:,1] <= GEO.nd(-70 * u.kilometer) | |
#Model.plasticStrain.data[noncrust_mask2] = 0.0 | |
#=========================== | |
#==================================== | |
# Damage oceanic lithosphere | |
#==================================== | |
def gaussian(zz, centre, width): | |
return ( np.exp( -(zz - centre)**2 / width )) | |
maxDamage = 0.25 | |
centre = (GEO.nd(550. * u.kilometer), GEO.nd(-24. * u.kilometer)) | |
width = GEO.nd(50 * u.kilometer) # this gives a normal distribution | |
# from about -100 km to 100 km | |
Model.plasticStrain.data[:] = maxDamage * np.random.rand(*Model.plasticStrain.data.shape[:]) | |
Model.plasticStrain.data[:,0] *= gaussian(Model.swarm.particleCoordinates.data[:,0], centre[0], width) | |
Model.plasticStrain.data[:,0] *= gaussian(Model.swarm.particleCoordinates.data[:,1], centre[1], width/50) | |
# The following lines make the random damage only apply to the crust | |
noncrust_mask = Model.swarm.particleCoordinates.data[:,1] <= GEO.nd(-70 * u.kilometer) | |
Air_Object_mask = Model.swarm.particleCoordinates.data[:,1] > GEO.nd(-5 * u.kilometer) | |
LateralExclusion0_mask = Model.swarm.particleCoordinates.data[:,0] < GEO.nd(150 * u.kilometer) | |
LateralExclusion1_mask = Model.swarm.particleCoordinates.data[:,0] > GEO.nd(1000 * u.kilometer) | |
Model.plasticStrain.data[noncrust_mask] = 0.0 | |
Model.plasticStrain.data[Air_Object_mask] = 0.0 | |
Model.plasticStrain.data[LateralExclusion0_mask] = 0.0 | |
Model.plasticStrain.data[LateralExclusion1_mask] = 0.0 | |
#========================== | |
# Damage Benioff plane | |
#========================== | |
#def gaussian(xx, centre, widthz): | |
# return ( np.exp( -(xx - centre)**2 / widthz )) | |
#widthx = GEO.nd(3.0 * u.kilometer) # width of the damaged region along x, for a normal distribution twice as large | |
#widthz = GEO.nd(48. * u.kilometer) # width of the damaged region along z, for a normal distribution twice as large | |
#maxDamage = 0.5 | |
#angle = 1.0 # tan(degree*2*pi/360): (10>0.176327, 20>0.3639702, 30>0.5773503, 40>0.8390996, 45>1, 50>1.191754, 60>1.732051, 70>2.747477, 80>5.671282) | |
#centre = angle * Model.swarm.particleCoordinates.data[:,1] + (((GEO.nd(618. * u.kilometer)-angle*(widthx/2)))) | |
#Model.plasticStrain.data[:] = maxDamage * np.random.rand(*Model.plasticStrain.data.shape[:]) | |
#Model.plasticStrain.data[:,0] *= gaussian(Model.swarm.particleCoordinates.data[:,0], centre , widthz) | |
#Model.plasticStrain.data[:,0] *= gaussian(Model.swarm.particleCoordinates.data[:,1], GEO.nd(-3. * u.kilometer), widthx*100) | |
#Air_Object_mask = Model.swarm.particleCoordinates.data[:,1] > GEO.nd(-5 * u.kilometer) | |
#Model.plasticStrain.data[Air_Object_mask] = 0.0 | |
#noncrust_mask2 = Model.swarm.particleCoordinates.data[:,1] <= GEO.nd(-100 * u.kilometer) | |
#Model.plasticStrain.data[noncrust_mask2] = 0.0 | |
#""" | |
# Benioff random damage | |
#==================================== | |
#""" | |
#=========================== | |
pts_lithosphere = GEO.circles_grid(radius=2.5*u.kilometer, | |
minCoord=[0.0 * u.kilometer, Lithospheric_Mantle_Object.bottom], | |
maxCoord=[1636. * u.kilometer, Sticky_Air_Object.bottom]) | |
Model.add_passive_tracers(name="Lithosphere", vertices=pts_lithosphere) | |
# + | |
# #Adding the surface tracers | |
# x_surface = np.array([GEO.nd(0*u.kilometer),GEO.nd(566*u.kilometer),GEO.nd(584*u.kilometer), | |
# GEO.nd(1436*u.kilometer),GEO.nd(1536*u.kilometer)]) | |
# y_surface = np.array([GEO.nd(1*u.kilometer),GEO.nd(1*u.kilometer), | |
# GEO.nd(-5*u.kilometer),GEO.nd(-5*u.kilometer),GEO.nd(-3*u.kilometer)]) | |
# + | |
# coords_surface = np.ndarray((len(x_surface),2)) | |
# coords_surface[:,0] = x_surface | |
# coords_surface[:,1] = y_surface | |
# Model.add_passive_tracers(name = 'Surface', vertices = coords_surface) | |
# + | |
# #Adding the moho tracers | |
# x_moho = np.array([GEO.nd(0*u.kilometer),GEO.nd(550*u.kilometer), GEO.nd(584*u.kilometer)]) | |
# y_moho = np.array([GEO.nd(-39*u.kilometer),GEO.nd(-39*u.kilometer), GEO.nd(-5*u.kilometer)]) | |
# + | |
# coords_moho = np.ndarray((len(x_moho),2)) | |
# coords_moho[:,0] = x_moho | |
# coords_moho[:,1] = y_moho | |
# Model.add_passive_tracers(name = 'Moho', vertices = coords_moho) | |
# - | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig = vis.Figure(figsize=(1200,400)) | |
Fig.Points(Model.swarm, Model.materialField, colours='#d3fefb #F0F8FF #19497c #96c556 #b5dca8 #1a6615 #a58436 #e3e137 #fffb00 #dfa0b7 #6c6c6c #663547 #171717 #ac0000', fn_size=2.0, discrete=True) | |
# Fig.Points(Model.Lithosphere_tracers, pointSize=1.0, colour="black") | |
Fig.show() | |
# Setting up Temperature Boundary conditions. | |
Model.set_temperatureBCs(top = 293.15 * u.kelvin, | |
bottom = 1673.15 * u.kelvin, | |
materials=[(Air_Object, 293.15 * u.kelvin),(Sticky_Air_Object, 293.15 * u.kelvin),(Asthenospheric_Mantle_Object, 1603.15 * u.kelvin)]) | |
Model.swarm.allow_parallel_nn = True | |
Model.init_model() | |
# + | |
Oceanic_Sediment.phase_changes = GEO.PhaseChange((Model.temperature > GEO.nd(523 * u.kelvin)), Eclogite_Object.index) | |
Oceanic_Upper_Crust.phase_changes = GEO.PhaseChange((Model.temperature > GEO.nd(523 * u.kelvin)), Eclogite_Object.index) | |
#Oceanic_Lower_Crust.phase_changes = GEO.PhaseChange((Model.temperature > GEO.nd(523 * u.kelvin)), Eclogite_Object.index) | |
vel_left_in = 2.0 * u.centimeter / u.year | |
vel_left_out = -0.4545454545 * u.centimeter / u.year | |
depth_left_z1 = 20. * u.kilometre | |
depth_left_z2 = 10. * u.kilometre | |
depth_left_z3 = -80. * u.kilometre | |
depth_left_z4 = -140. * u.kilometre | |
depth_left_z5 = -160. * u.kilometre | |
grad_left_z1z2 = (GEO.nd(0 * u.centimeter / u.year) - GEO.nd(vel_left_in)) / (GEO.nd(depth_left_z1) - GEO.nd(depth_left_z2)) | |
grad_left_z3z4 = (GEO.nd(vel_left_in) - GEO.nd(0 * u.centimeter / u.year)) / (GEO.nd(depth_left_z3) - GEO.nd(depth_left_z4)) | |
grad_left_z4z5 = (GEO.nd(0 * u.centimeter / u.year) - GEO.nd(vel_left_out)) / (GEO.nd(depth_left_z4) - GEO.nd(depth_left_z5)) | |
# + | |
# conditions_left_wall = [(Model.y > GEO.nd(depth_left_top), GEO.nd(vel_left_top)), | |
# (Model.y > GEO.nd(depth_left_down), | |
# ((m_left * Model.y) + b_left)), | |
# (True, GEO.nd(vel_left_down))] | |
# - | |
conditions_left_wall = [(Model.y > GEO.nd(depth_left_z1), GEO.nd(0 * u.centimeter / u.year)), | |
(Model.y > GEO.nd(depth_left_z2), grad_left_z1z2 * (Model.y - GEO.nd(depth_left_z1)) + GEO.nd(0 * u.centimeter / u.year)), | |
(Model.y > GEO.nd(depth_left_z3), GEO.nd(vel_left_in)), | |
(Model.y > GEO.nd(depth_left_z4), grad_left_z3z4 * (Model.y - GEO.nd(depth_left_z3)) + GEO.nd(vel_left_in)), | |
(Model.y > GEO.nd(depth_left_z5), grad_left_z4z5 * (Model.y - GEO.nd(depth_left_z4))), | |
(True, GEO.nd(vel_left_out))] | |
function_left_wall = fn.branching.conditional(conditions_left_wall) | |
# + | |
# vel_right_top = -1.25 * u.centimeter / u.year | |
# vel_right_down = 0.219541 * u.centimeter / u.year | |
# depth_right_top = -110. * u.kilometre | |
# depth_right_down = -120. * u.kilometre | |
# m_right = (GEO.nd(vel_right_top) - GEO.nd(vel_right_down)) / (GEO.nd(depth_right_top) - GEO.nd(depth_right_down)) | |
# b_right = GEO.nd(vel_right_top) - (GEO.nd(m_right)*(GEO.nd(depth_right_top))) | |
# - | |
vel_right_in = -2.0 * u.centimeter / u.year | |
vel_right_out = 0.4545454545 * u.centimeter / u.year | |
depth_right_z1 = 20. * u.kilometre | |
depth_right_z2 = 10. * u.kilometre | |
depth_right_z3 = -80. * u.kilometre | |
depth_right_z4 = -140. * u.kilometre | |
depth_right_z5 = -160. * u.kilometre | |
grad_right_z1z2 = (GEO.nd(0 * u.centimeter / u.year) - GEO.nd(vel_right_in)) / (GEO.nd(depth_right_z1) - GEO.nd(depth_right_z2)) | |
grad_right_z3z4 = (GEO.nd(vel_right_in) - GEO.nd(0 * u.centimeter / u.year)) / (GEO.nd(depth_right_z3) - GEO.nd(depth_right_z4)) | |
grad_right_z4z5 = (GEO.nd(0 * u.centimeter / u.year) - GEO.nd(vel_right_out)) / (GEO.nd(depth_right_z4) - GEO.nd(depth_right_z5)) | |
# + | |
# conditions_right_wall = [(Model.y > GEO.nd(depth_right_top), GEO.nd(vel_right_top)), | |
# (Model.y > GEO.nd(depth_right_down), | |
# ((m_right * Model.y) + b_right)), | |
# (True, GEO.nd(vel_right_down))] | |
# - | |
conditions_right_wall = [(Model.y > GEO.nd(depth_right_z1), GEO.nd(0 * u.centimeter / u.year)), | |
(Model.y > GEO.nd(depth_right_z2), grad_right_z1z2 * (Model.y - GEO.nd(depth_right_z1)) + GEO.nd(0 * u.centimeter / u.year)), | |
(Model.y > GEO.nd(depth_right_z3), GEO.nd(vel_right_in)), | |
(Model.y > GEO.nd(depth_right_z4), grad_right_z3z4 * (Model.y - GEO.nd(depth_right_z3)) + GEO.nd(vel_right_in)), | |
(Model.y > GEO.nd(depth_right_z5), grad_right_z4z5 * (Model.y - GEO.nd(depth_right_z4))), | |
(True, GEO.nd(vel_right_out))] | |
function_right_wall = fn.branching.conditional(conditions_right_wall) | |
# + | |
# Model.set_velocityBCs(left=[function_left_wall, None], | |
# right=[function_right_wall, None], | |
# bottom=GEO.LecodeIsostasy(reference_mat=Asthenospheric_Mantle_Object, average=True)) | |
# - | |
Model.set_velocityBCs(left=[function_left_wall, None], | |
right=[function_right_wall, None], | |
bottom=[None,0.], | |
top=[None,0.]) | |
# + | |
#Model.plasticStrain.data[air_mask] = 0.0 | |
# + | |
# #Surface processes | |
# Model.surfaceProcesses = GEO.surfaceProcesses.SedimentationThreshold(air=[Air_Object], sediment=[Continental_Sediment_1, Oceanic_Sediment], threshold = -5. * u.kilometre) | |
# - | |
Model.surfaceProcesses = GEO.surfaceProcesses.ErosionThreshold(air=[Sticky_Air_Object],threshold = 5. * u.kilometre) | |
Model.init_model(temperature="steady-state", pressure="lithostatic") | |
Model.set_temperatureBCs(top = 293.15 * u.kelvin, | |
bottom = 1673.15 * u.kelvin, | |
materials=[(Air_Object, 293.15 * u.kelvin), (Sticky_Air_Object, 293.15 * u.kelvin)]) | |
# + | |
# npoints = 1536 # This is the number of points used to define the surface | |
# coords = np.ndarray((npoints, 2)) | |
# coords[:, 0] = np.linspace(GEO.nd(Model.minCoord[0]), GEO.nd(Model.maxCoord[0]), npoints) | |
# coords[:, 1] = 0. | |
# surface_tracers = Model.add_passive_tracers(name="Surface", vertices=coords) | |
# coords[:, 1] -= -GEO.nd(uppermantle.top) | |
# moho_tracers = Model.add_passive_tracers(name="Moho", vertices=coords) | |
# - | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig = vis.Figure(figsize=(1200,400), title="Temperature Field (Kelvin)", quality=3) | |
Fig.Surface(Model.mesh, GEO.dimensionalise(Model.temperature, u.kelvin), colours="coolwarm", drawSides = "xyzXYZ") | |
# Fig.Points(Model.Surface_tracers, pointSize=10, colour="black") | |
# Fig.Points(Model.Moho_tracers, pointSize=10, colour="red") | |
Fig.show() | |
if plotting_bool == True: | |
distances, temperature = GEO.extract_profile(Model.temperature, line = [(100.* u.kilometer, Model.top), (100.* u.kilometer, Model.bottom)]) | |
distances, pressure = GEO.extract_profile(Model.pressureField, line = [(100.* u.kilometer, Model.top), (100.* u.kilometer, Model.bottom)]) | |
distances, viscosity = GEO.extract_profile(Model.viscosityField, line = [(100.* u.kilometer, Model.top), (100.* u.kilometer, Model.bottom)]) | |
import matplotlib.pyplot as plt | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig, (ax1, ax2, ax3) = plt.subplots(1,3,figsize=(15,7)) | |
ax1.plot(GEO.dimensionalise(temperature , u.celsius), GEO.dimensionalise(distances, u.kilometer)) | |
ax1.set_xlabel("Temperature [$C^{\circ}$]") | |
ax1.set_ylabel("Depth [km]") | |
ax1.set_ylim(250, 40) | |
ax1.set_xlim(0,1700) | |
ax1.set_title("Temperature profile") | |
ax2.plot(GEO.dimensionalise(pressure, u.gigapascal), GEO.dimensionalise(distances, u.kilometer)) | |
ax2.set_xlabel("Pressure [GPa]") | |
ax2.set_title("Pressure profile") | |
ax2.set_ylim(250, 40) | |
ax2.set_xlim(0,10) | |
ax3.plot(GEO.dimensionalise(viscosity, u.pascal * u.second), GEO.dimensionalise(distances, u.kilometer)) | |
ax3.set_xlabel("Viscosity [Pa.s]") | |
ax3.set_title("Viscosity profile") | |
ax3.set_ylim(250, 40) | |
ax3.set_xlim(1e18,1.5e23) | |
# - | |
if plotting_bool == True: | |
distances2, temperature2 = GEO.extract_profile(Model.temperature, line = [(2.* u.kilometer, Model.top), (100.* u.kilometer, Model.bottom)]) | |
distances2, pressure2 = GEO.extract_profile(Model.pressureField, line = [(2.* u.kilometer, Model.top), (100.* u.kilometer, Model.bottom)]) | |
distances2, viscosity2 = GEO.extract_profile(Model.viscosityField, line = [(2.* u.kilometer, Model.top), (100.* u.kilometer, Model.bottom)]) | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
import matplotlib.pyplot as plt | |
Fig, (ax1, ax2, ax3) = plt.subplots(1,3,figsize=(15,7)) | |
ax1.plot(GEO.dimensionalise(1.01*temperature, u.celsius), GEO.dimensionalise(distances, u.kilometer)) | |
ax1.plot(GEO.dimensionalise(temperature2, u.celsius), GEO.dimensionalise(distances2, u.kilometer)) | |
ax1.set_xlabel("Temperature [$C^{\circ}$]") | |
ax1.set_ylabel("Depth [km]") | |
ax1.set_ylim(250, 40) | |
ax1.set_xlim(0,1700) | |
ax1.set_title("Temperature profile") | |
ax2.plot(GEO.dimensionalise(pressure2, u.gigapascal), GEO.dimensionalise(distances2, u.kilometer)) | |
ax2.set_xlabel("Pressure [GPa]") | |
ax2.set_title("Pressure profile") | |
ax2.set_ylim(250, 40) | |
ax2.set_xlim(0,10) | |
ax3.plot(GEO.dimensionalise(viscosity2, u.pascal * u.second), GEO.dimensionalise(distances2, u.kilometer)) | |
ax3.set_xlabel("Viscosity [Pa.s]") | |
ax3.set_title("Viscosity profile") | |
ax3.set_ylim(250, 40) | |
ax3.set_xlim(1e18,1.5e23) | |
# - | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig = vis.Figure(figsize=(1200,400)) | |
Fig.Surface(Model.mesh, GEO.dimensionalise(Model.pressureField, u.gigapascal)) | |
Fig.show() | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig = vis.Figure(figsize=(1200,400), title="Viscosity Field [Pa.s]", quality=3) | |
Fig.Points(Model.swarm, | |
GEO.dimensionalise(Model.viscosityField, u.pascal * u.second), | |
logScale=True, | |
fn_size=3.0) | |
Fig.show() | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig = vis.Figure(figsize=(1200,400), title="Strain Field", quality=3) | |
Fig.Surface(Model.mesh, GEO.dimensionalise(Model.strainRateField, u.second**-1)) | |
Fig.show() | |
if plotting_bool == True: | |
if GEO.nProcs == 1: | |
Fig = vis.Figure(figsize=(1200,400), title="Velocity (cm/yr)", quality=2) | |
Fig.Surface(Model.mesh, Model.velocityField[0]) | |
Fig.show() | |
def post_hook(): | |
# Stop any brittle yielding near the edges of the model | |
coords = fn.input() | |
zz = (coords[0] - GEO.nd(Model.minCoord[0])) / (GEO.nd(Model.maxCoord[0]) - GEO.nd(Model.minCoord[0])) | |
fact = fn.math.pow(fn.math.tanh(zz*20.0) + fn.math.tanh((1.0-zz)*20.0) - fn.math.tanh(20.0), 4) | |
Model.plasticStrain.data[:] = Model.plasticStrain.data[:] * fact.evaluate(Model.swarm) | |
# + | |
# To check default parameters run: GEO.rcParamsDefault | |
# + | |
GEO.rcParams["initial.nonlinear.tolerance"] = 1e-3 | |
GEO.rcParams["nonlinear.tolerance"] = 1e-3 # 5e-4 | |
GEO.rcParams["nonlinear.min.iterations"] = 1 | |
GEO.rcParams["nonlinear.max.iterations"] = 100 | |
GEO.rcParams["CFL"] = 0.1 # Courant factor | |
GEO.rcParams["advection.diffusion.method"] = "SLCN" #SUPG or SLCN | |
GEO.rcParams["shear.heating"] = True | |
GEO.rcParams["surface.pressure.normalization"] = True # Make sure the top of the model is approximately 0 Pa | |
GEO.rcParams["swarm.particles.per.cell.2D"] = 60 | |
GEO.rcParams["popcontrol.split.threshold"] = 0.15 #0.95 | |
GEO.rcParams["popcontrol.max.splits"] = 100 | |
GEO.rcParams["popcontrol.particles.per.cell.2D"] = 60 | |
# - | |
GEO.rcParams["default.outputs"].append("projMeltField") | |
GEO.rcParams["default.outputs"].append("projStressTensor") | |
GEO.rcParams["default.outputs"].append("projSurfaceProcess") | |
# + | |
# population_control = uw.swarm.PopulationControl(swarm, | |
# aggressive=True,splitThreshold=0.15, | |
# maxDeletions=2,maxSplits=10, | |
# particlesPerCell=20) | |
# - | |
# This is a bunch of solver options. You can try playing with them, but these should be good enough. | |
# For more details: https://underworld2.readthedocs.io/en/v2.14.0b/build/user_guide/08_StokesSolver.html | |
solver = Model.solver | |
# Decide whether to use mumps or multigrid | |
if resolution[0] * resolution[1] < 0: #1e6: | |
print("Using mumps") | |
solver.set_inner_method("mumps") # "mumps" is a good alternative for "lu" | |
#solver.set_inner_method("lu") # use "lu" direct solve and large penalty (if running in serial) | |
#solver.set_inner_method("superludist") | |
else: | |
print("Using multigrid with coarse mumps") | |
#solver.options.mg.levels = 4 | |
solver.options.A11.mg_coarse_pc_factor_mat_solver_package = "mumps" | |
solver.options.A11.mg_coarse_pc_type = "lu" | |
solver.options.A11.mg_coarse_ksp_type = "preonly" | |
solver.options.A11.mg_coarse_ksp_view = "" | |
solver.set_penalty(1e5) #1e6 | |
#GEO.rcParams["initial.nonlinear.tolerance"] = 1e-3 | |
solver.options.A11.ksp_rtol=1e-8 #Try 1e-4 | |
solver.options.A11.ksp_set_min_it_converge = 10 | |
solver.options.A11.use_previous_guess = True | |
solver.options.scr.ksp_rtol=1e-6 #Try 1e-3 | |
solver.options.scr.use_previous_guess = True | |
solver.options.scr.ksp_set_min_it_converge = 10 | |
solver.options.scr.ksp_type = "cg" | |
# + | |
#solver.options.main.help = "" | |
solver.options.main.remove_constant_pressure_null_space=True | |
#solver.options.main.Q22_pc_type = "uwscale" | |
#solver.set_penalty(1e6) | |
#GEO.rcParams["initial.nonlinear.tolerance"] = 1e-3 | |
# Penalty method with mult grid (mg) | |
#solver.set_penalty(1.0) | |
#solver.solve(nonLinearIterate=True, nonLinearTolerance=0.01) | |
# - | |
Model.run_for(50000000. * u.years, checkpoint_interval = 5e4 * u.year) #, restartStep=147, restartDir="Col230") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment