Created
May 30, 2018 17:46
-
-
Save juliensimon/16a252b6284bcfde3a29025ccb8c4c8e to your computer and use it in GitHub Desktop.
kerasmxnet-run.log
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Using MXNet backend | |
Hyper parameters: {'lr': '0.01', 'batch_size': '256', 'epochs': '10', 'gpus': '2'} | |
Input parameters: {'validation': {'S3DistributionType': 'FullyReplicated', 'TrainingInputMode': 'File', 'RecordWrapperType': 'None'}, 'training': {'S3DistributionType': 'FullyReplicated', 'TrainingInputMode': 'File', 'RecordWrapperType': 'None'}} | |
Files loaded | |
x_train shape: (60000, 1, 28, 28) | |
60000 train samples | |
10000 test samples | |
Train on 60000 samples, validate on 10000 samples | |
Epoch 1/10 | |
/usr/local/lib/python3.5/dist-packages/mxnet/module/bucketing_module.py:408: UserWarning: Optimizer created manually outside Module but rescale_grad is not normalized to 1.0/batch_size/num_workers (1.0 vs. 0.00390625). Is this intended? | |
force_init=force_init) | |
[17:43:09] src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:107: Running performance tests to find the best convolution algorithm, this can take a while... (setting env variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable) | |
256/60000 [..............................] - ETA: 35:17 - loss: 2.3051 - acc: 0.0938 | |
2048/60000 [>.............................] - ETA: 4:18 - loss: 1.8998 - acc: 0.3926 | |
<output removed> | |
56320/60000 [===========================>..] - ETA: 0s - loss: 0.0284 - acc: 0.9905 | |
58624/60000 [============================>.] - ETA: 0s - loss: 0.0284 - acc: 0.9905 | |
60000/60000 [==============================] - 2s 26us/step - loss: 0.0283 - acc: 0.9905 - val_loss: 0.0257 - val_acc: 0.9916 | |
Test loss: 0.025707698954685294 | |
Test accuracy: 0.9916 | |
Saved Keras model | |
MXNet Backend: Successfully exported the model as MXNet model! | |
MXNet symbol file - /opt/ml/model/mnist-cnn-10-symbol.json | |
MXNet params file - /opt/ml/model/mnist-cnn-10-0000.params | |
Model input data_names and data_shapes are: | |
data_names : ['/conv2d_1_input1'] | |
data_shapes : [DataDesc[/conv2d_1_input1,(256, 1, 28, 28),float32,NCHW]] | |
Note: In the above data_shapes, the first dimension represent the batch_size used for model training. | |
You can change the batch_size for binding the module based on your inference batch_size. | |
Saved MXNet model | |
===== Job Complete ===== | |
Billable seconds: 121 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment