Last active
April 24, 2017 00:07
-
-
Save juliensimon/ed9dd3b63cb180818368e937ce0f3e44 to your computer and use it in GitHub Desktop.
Load CIFAR-10 in NDArrays
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet as mx | |
def buildTrainingSet(path): | |
training_data = [] | |
training_label = [] | |
for f in ("data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5"): | |
imgarray, lblarray = extractImagesAndLabels(path, f) | |
if not training_data: | |
training_data = imgarray | |
training_label = lblarray | |
else: | |
training_data = mx.nd.concatenate([training_data, imgarray]) | |
training_label = mx.nd.concatenate([training_label, lblarray]) | |
return training_data, training_label | |
path="cifar-10-batches-py/" | |
batch=128 | |
training_data, training_label = buildTrainingSet(path) | |
train_iter = mx.io.NDArrayIter( | |
data=training_data, label=training_label, batch_size=batch, shuffle=True) | |
valid_data, valid_label = extractImagesAndLabels(path, "test_batch") | |
valid_iter = mx.io.NDArrayIter( | |
data=valid_data, label=valid_label, batch_size=batch, shuffle=True) | |
print training_data.shape | |
print training_label.shape | |
print valid_data.shape | |
print valid_label.shape |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment