Skip to content

Instantly share code, notes, and snippets.

@junkwhinger
Last active October 20, 2016 03:30
Show Gist options
  • Save junkwhinger/17f93fb1761a510784ba to your computer and use it in GitHub Desktop.
Save junkwhinger/17f93fb1761a510784ba to your computer and use it in GitHub Desktop.
Population Structure Changes over time in Korea and Japan
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script charset="utf-8" src="https://d3js.org/d3.v3.min.js">
</script>
<style>
.title {
font: 20px helvetica;
fill: #404040;
text-transform: capitalize;
}
.chart_label,
.axis {
font: 12px helvetica;
fill: rgb(99,99,99);
}
.expl_header {
font: 15px helvetica;
}
.expl {
font: 12px helvetica;
}
.axis path,
.axis line {
color: red;
fill: none;
stroke: #000;
stroke-width: 1px;
}
.left.bar,
.legend_male {
fill: #6b8891;
}
.right.bar,
.legend_female {
fill: #b27b88;
}
.legend_text {
font: 13px helvetica;
}
div.years_buttons {
display: flex;
justify-content: space-between;
width: 900px;
}
div.years_buttons div {
font: 12px helvetica;
padding: 3px;
margin: 7px;
width: 55px;
text-align: center;
}
</style>
<script type="text/javascript">
function draw(data) {
// setting the margin and space
var margin = {top: 60, right: 30, bottom: 24, left: 30, middle: 28},
width = 450 - margin.left - margin.right,
height = 450 - margin.top - margin.bottom;
var regionWidth = width/2 - margin.middle;
var pointA = regionWidth,
pointB = width - regionWidth;
var formatPercent = d3.format(".0%");
// simple two levels: 1) country 2) year
var year_data = d3.nest()
.key(function(d) {return d.year;})
.key(function(d) {return d.country})
.entries(data);
// to reverse the axes for female
function unique(x) {
return x.reverse().filter(function (e, i, x) {return x.indexOf(e, i+1) === -1;}).reverse();
}
// to make translate easier
function translation(x,y) {
return 'translate(' + x + ',' + y + ')';
}
// use the very first year data for the chart
var countries = year_data[0].values;
var i = 0;
// plot charts for each country
countries.forEach(function(c) {
c.totalPopulation = d3.sum(c.values, function(d) {return d.population; });
var percentage = function(d) {return d/ c.totalPopulation;};
array_by_age = d3.nest()
.key(function(d) {return d.age_bin;})
.entries(c.values)
// find the max x value to set the scale of the plots
c.maxValue = Math.max(
d3.max(array_by_age, function(d) {
var male_val = d.values.filter(function(e) {return e.sex === 'male'})[0].population;
return percentage(male_val);
}),
d3.max(array_by_age, function(d) {
var female_val = d.values.filter(function(e) {return e.sex === 'female'})[0].population;
return percentage(female_val);
})
);
// set svg
var svg = d3.select("div.chart").append('svg')
.attr("class", "population_chart")
.attr("id", c.key)
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
// add titles
svg.append("text")
.attr("class", "title")
.attr("x", width / 2)
.attr("y", 0 - (margin.top / 3))
.attr("text-anchor", "middle")
.text(function(d) {
return c.key + "-" + c.values[0].year;
});
// draw legend
if (c.key == 'korea') {
svg.append("rect")
.attr("class", "legend_male")
.attr("x", 0)
.attr("y", 0)
.attr("width", 15)
.attr("height", 15);
svg.append("rect")
.attr("class", "legend_female")
.attr("x", 0)
.attr("y", 20)
.attr("width", 15)
.attr("height", 15);
svg.append("text")
.attr("class", "legend_text")
.attr("x", 18)
.attr("y", 12)
.text("male");
svg.append("text")
.attr("class", "legend_text")
.attr("x", 18)
.attr("y", 32)
.text("female");
}
// set xScale
var xScale = d3.scale.linear()
.domain([0, c.maxValue])
.range([0, regionWidth])
.nice();
// set xScale for male
var xScaleLeft = d3.scale.linear()
.domain([0, c.maxValue])
.range([regionWidth, 0]);
// set xScale for female
var xScaleRight = d3.scale.linear()
.domain([0, c.maxValue])
.range([0, regionWidth]);
// set yScale
var yScale = d3.scale.ordinal()
.domain(unique(c.values.map(function(d) {return d.age_bin})))
.rangeRoundBands([height, 0], 0.1);
// set yAxis for male
var yAxisLeft = d3.svg.axis()
.scale(yScale)
.orient('right')
.tickSize(4,0)
.tickPadding(margin.middle - 4);
// set yAxis for female
var yAxisRight = d3.svg.axis()
.scale(yScale)
.orient('left')
.tickSize(4,0)
.tickFormat('');
// set xAxis for female
var xAxisRight = d3.svg.axis()
.scale(xScale)
.orient('bottom')
.tickFormat(d3.format('%'))
.ticks(5);
// set xAxis for male
var xAxisLeft = d3.svg.axis()
.scale(xScale.copy().range([pointA, 0]))
.orient('bottom')
.tickFormat(d3.format('%'))
.ticks(5);
var leftBarGroup = svg.append('g')
.attr('class', 'lbg')
.attr('transform', translation(pointA, 0) + 'scale(-1,1)');
var rightBarGroup = svg.append('g')
.attr('class', 'rbg')
.attr('transform', translation(pointB, 0));
// left y axis group
svg.append('g')
.attr('class', 'axis y left')
.attr('transform', translation(pointA, 0))
.call(yAxisLeft)
.selectAll('text')
.style('text-anchor', 'middle');
// right y axis group
svg.append('g')
.attr('class', 'axis y right')
.attr('transform', translation(pointB, 0))
.call(yAxisRight);
// left x axis group
svg.append('g')
.attr('class', 'axis x left')
.attr('transform', translation(0, height))
.call(xAxisLeft);
// right x axis group
svg.append('g')
.attr('class', 'axis x right')
.attr('transform', translation(pointB, height))
.call(xAxisRight);
// data that contains 0 for nice animation when the page starts
var null_data = [{
"group": "0-4",
"male": 0,
"female": 0
}, {
"group": "5-9",
"male": 0,
"female": 0
}, {
"group": "10-14",
"male": 0,
"female": 0
}, {
"group": "15-19",
"male": 0,
"female": 0
}, {
"group": "20-24",
"male": 0,
"female": 0
}, {
"group": "25-29",
"male": 0,
"female": 0
}, {
"group": "30-34",
"male": 0,
"female": 0
}, {
"group": "35-39",
"male": 0,
"female": 0
}, {
"group": "40-44",
"male": 0,
"female": 0
}, {
"group": "45-49",
"male": 0,
"female": 0
}, {
"group": "50-54",
"male": 0,
"female": 0
}, {
"group": "55-59",
"male": 0,
"female": 0
}, {
"group": "60-64",
"male": 0,
"female": 0
}, {
"group": "65-69",
"male": 0,
"female": 0
}, {
"group": "70-74",
"male": 0,
"female": 0
}, {
"group": "75-79",
"male": 0,
"female": 0
}, {
"group": "80-84",
"male": 0,
"female": 0
}, {
"group": "85+",
"male": 0,
"female": 0
}];
// initiate the leftBarGroup
leftBarGroup.selectAll('.bar.left')
.data(null_data)
.enter().append('rect')
.attr('class', 'bar left')
.attr('x', 0)
.attr('y', function(d) { return yScale(d.group); })
.attr('width', function(d) { return xScale(percentage(d.male)); })
.attr('height', yScale.rangeBand());
// initiate the rightBarGroup
rightBarGroup.selectAll('.bar.right')
.data(null_data)
.enter().append('rect')
.attr('class', 'bar right')
.attr('x', 0)
.attr('y', function(d) { return yScale(d.group); })
.attr('width', function(d) { return xScale(percentage(d.female)); })
.attr('height', yScale.rangeBand());
var c_data = d3.nest().key(function(d){return d.sex}).entries(c.values);
var male_data = c_data[0].values;
var female_data = c_data[1].values;
// update the data for male
leftBarGroup.selectAll('.bar.left')
.data(male_data)
.transition()
.duration(1000)
.attr('width', function(d) {
return xScale(percentage(d.population)); })
.attr('height', yScale.rangeBand());
// update the data for female
rightBarGroup.selectAll('.bar.right')
.data(female_data)
.transition()
.duration(1000)
.attr('width', function(d) { return xScale(percentage(d.population)); })
.attr('height', yScale.rangeBand());
// to the next year group
i += 1;
});
// update function
// bring new year_data
// find new max value for axis scaling
// reset axes and update data
function update(year_idx) {
var countries = year_data[year_idx].values;
countries.forEach(function(c) {
var target_country = c.key;
c.totalPopulation = d3.sum(c.values, function(d) {return d.population; });
var percentage = function(d) {return d/ c.totalPopulation;};
array_by_age = d3.nest()
.key(function(d) {return d.age_bin;})
// .key(function(d) {return d.sex})
.entries(c.values)
c.maxValue = Math.max(
d3.max(array_by_age, function(d) {
var male_val = d.values.filter(function(e) {return e.sex === 'male'})[0].population;
return percentage(male_val);
}),
d3.max(array_by_age, function(d) {
var female_val = d.values.filter(function(e) {return e.sex === 'female'})[0].population;
return percentage(female_val);
})
);
var xScale = d3.scale.linear()
.domain([0, c.maxValue])
.range([0, regionWidth])
.nice();
var yScale = d3.scale.ordinal()
.domain(unique(c.values.map(function(d) {return d.age_bin})))
.rangeRoundBands([height, 0], 0.1);
var xAxisRight = d3.svg.axis()
.scale(xScale)
.orient('bottom')
.tickFormat(d3.format('%'))
.ticks(5);
var xAxisLeft = d3.svg.axis()
.scale(xScale.copy().range([pointA, 0]))
.orient('bottom')
.tickFormat(d3.format('%'))
.ticks(5);
var n_svg = d3.select("svg#" +c.key)
.data([c.values])
n_svg.select(".title")
.transition()
.duration(1000)
.text(function(c) {
return c[0].country + "-" + c[0].year
});
n_svg.selectAll('.axis.x.left')
.transition()
.duration(1000)
.call(xAxisLeft);
n_svg.selectAll('.axis.x.right')
.transition()
.duration(1000)
.call(xAxisRight);
var c_data = d3.nest().key(function(d){return d.sex}).entries(c.values);
var male_data = c_data[0].values;
var female_data = c_data[1].values;
n_svg.select(".lbg").selectAll('rect.bar.left')
.data(male_data)
.transition()
.duration(1000)
.attr('width', function(d) { return xScale(percentage(d.population)); })
.attr('height', yScale.rangeBand());
n_svg.select(".rbg").selectAll('rect.bar.right')
.data(female_data)
.transition()
.duration(1000)
.attr('width', function(d) { return xScale(percentage(d.population)); })
.attr('height', yScale.rangeBand());
});
}
var years = [];
var year_idx = 1;
year_data.forEach(function(y) {
years.push(y.key)
})
var year_interval = setInterval(function() {
update([year_idx]);
year_idx++;
// if the year index exceeds the data length,
// stop the interval
if(year_idx >= years.length ) {
clearInterval(year_interval);
var buttons = d3.select("div.chart")
.append("div")
.attr("class", "years_buttons")
.selectAll("div")
.data(years)
.enter()
.append("div")
.text(function(d) {
return d;
});
buttons.on("click", function(d) {
d3.select(".years_buttons")
.selectAll("div")
.transition()
.duration(500)
.style("color", "black")
.style("background", "white");
d3.select(this)
.transition()
.duration(500)
.style("background", "black")
.style("color", "white");
update(years.indexOf(d))
})
} else {
// auto-update debugging
// console.log("it's okay")
}}, 1000);
}
</script>
<title></title>
</head>
<body>
<div class="chart"></div>
<script type="text/javascript">
d3.csv("population.csv", function(d){
d.population = +d.population;
return d;
}, draw)
</script>
<div>
<h2 class="expl_header">Main Findings</h2>
<li class="expl">Before mid 20th century, South Korea and Japan had expansive pyramid population structure which is often found in developing countries.</li>
<li class="expl">There was a dramatic shift in young male adult population (20-39) in Japan between 1940 and 1945, which is likely to be caused by the Second World War.</li>
<li class="expl">The Korean population statistics in 1950 is considered to be more or less inaccuarate due to the Korean War.</li>
<li class="expl">In 1955, Korea saw less number of 0-4 babies than 5-9 kids for the first time in its modern history, and that age cohort keeps shrinking since then.</li>
<li class="expl">After 1990s Korea's population structure has become similar to that of Japan. This transformation is fueled by the atomization of extended families, the influx of western culture(individualism) and sudden economic recessions(IMF, dot-com bubble bust).</li>
</div>
</body>
</html>
country year age_bin sex population
korea 1925 0-4 male 1560053
korea 1925 0-4 female 1509533
korea 1925 5-9 male 1200503
korea 1925 5-9 female 1123590
korea 1925 10-14 male 1117122
korea 1925 10-14 female 1040101
korea 1925 15-19 male 964186
korea 1925 15-19 female 912881
korea 1925 20-24 male 749424
korea 1925 20-24 female 720859
korea 1925 25-29 male 754495
korea 1925 25-29 female 718047
korea 1925 30-34 male 654292
korea 1925 30-34 female 605105
korea 1925 35-39 male 594448
korea 1925 35-39 female 545399
korea 1925 40-44 male 497970
korea 1925 40-44 female 451578
korea 1925 45-49 male 425428
korea 1925 45-49 female 392262
korea 1925 50-54 male 347447
korea 1925 50-54 female 326250
korea 1925 55-59 male 291999
korea 1925 55-59 female 296371
korea 1925 60-64 male 231498
korea 1925 60-64 female 248627
korea 1925 65-69 male 181586
korea 1925 65-69 female 207868
korea 1925 70-74 male 94614
korea 1925 70-74 female 112990
korea 1925 75-79 male 45498
korea 1925 75-79 female 58776
korea 1925 80-84 male 12674
korea 1925 80-84 female 18238
korea 1925 85+ male 2913
korea 1925 85+ female 5405
korea 1930 0-4 male 1661240
korea 1930 0-4 female 1620443
korea 1930 5-9 male 1361625
korea 1930 5-9 female 1296035
korea 1930 10-14 male 1153608
korea 1930 10-14 female 1066871
korea 1930 15-19 male 1058199
korea 1930 15-19 female 993740
korea 1930 20-24 male 860573
korea 1930 20-24 female 850970
korea 1930 25-29 male 692154
korea 1930 25-29 female 679822
korea 1930 30-34 male 706726
korea 1930 30-34 female 677336
korea 1930 35-39 male 618681
korea 1930 35-39 female 578721
korea 1930 40-44 male 548241
korea 1930 40-44 female 507159
korea 1930 45-49 male 460921
korea 1930 45-49 female 428224
korea 1930 50-54 male 379603
korea 1930 50-54 female 357839
korea 1930 55-59 male 305594
korea 1930 55-59 female 302361
korea 1930 60-64 male 235138
korea 1930 60-64 female 248612
korea 1930 65-69 male 171553
korea 1930 65-69 female 196183
korea 1930 70-74 male 114519
korea 1930 70-74 female 137739
korea 1930 75-79 male 50191
korea 1930 75-79 female 66432
korea 1930 80-84 male 0
korea 1930 80-84 female 0
korea 1930 85+ male 0
korea 1930 85+ female 0
korea 1935 0-4 male 1864127
korea 1935 0-4 female 1807454
korea 1935 5-9 male 1478064
korea 1935 5-9 female 1408407
korea 1935 10-14 male 1301810
korea 1935 10-14 female 1229821
korea 1935 15-19 male 1080314
korea 1935 15-19 female 1021591
korea 1935 20-24 male 959748
korea 1935 20-24 female 937281
korea 1935 25-29 male 811545
korea 1935 25-29 female 802225
korea 1935 30-34 male 652568
korea 1935 30-34 female 633374
korea 1935 35-39 male 669307
korea 1935 35-39 female 639446
korea 1935 40-44 male 572611
korea 1935 40-44 female 540153
korea 1935 45-49 male 508714
korea 1935 45-49 female 482679
korea 1935 50-54 male 409120
korea 1935 50-54 female 388381
korea 1935 55-59 male 334045
korea 1935 55-59 female 331983
korea 1935 60-64 male 248205
korea 1935 60-64 female 255063
korea 1935 65-69 male 179466
korea 1935 65-69 female 202173
korea 1935 70-74 male 113398
korea 1935 70-74 female 134568
korea 1935 75-79 male 62583
korea 1935 75-79 female 83215
korea 1935 80-84 male 0
korea 1935 80-84 female 0
korea 1935 85+ male 0
korea 1935 85+ female 0
korea 1940 0-4 male 1974157
korea 1940 0-4 female 1923501
korea 1940 5-9 male 1655425
korea 1940 5-9 female 1581813
korea 1940 10-14 male 1398317
korea 1940 10-14 female 1322947
korea 1940 15-19 male 1142250
korea 1940 15-19 female 1121413
korea 1940 20-24 male 908119
korea 1940 20-24 female 926974
korea 1940 25-29 male 845382
korea 1940 25-29 female 859217
korea 1940 30-34 male 725152
korea 1940 30-34 female 731569
korea 1940 35-39 male 606498
korea 1940 35-39 female 598909
korea 1940 40-44 male 608860
korea 1940 40-44 female 592442
korea 1940 45-49 male 515050
korea 1940 45-49 female 501824
korea 1940 50-54 male 445617
korea 1940 50-54 female 439414
korea 1940 55-59 male 355954
korea 1940 55-59 female 357287
korea 1940 60-64 male 270603
korea 1940 60-64 female 281946
korea 1940 65-69 male 186391
korea 1940 65-69 female 186391
korea 1940 70-74 male 115515
korea 1940 70-74 female 140678
korea 1940 75-79 male 56882
korea 1940 75-79 female 76336
korea 1940 80-84 male 0
korea 1940 80-84 female 0
korea 1940 85+ male 0
korea 1940 85+ female 0
korea 1945 0-4 male 2159146
korea 1945 0-4 female 2119472
korea 1945 5-9 male 1815269
korea 1945 5-9 female 1747262
korea 1945 10-14 male 1545793
korea 1945 10-14 female 1462954
korea 1945 15-19 male 1174771
korea 1945 15-19 female 1175654
korea 1945 20-24 male 889337
korea 1945 20-24 female 979989
korea 1945 25-29 male 812916
korea 1945 25-29 female 858660
korea 1945 30-34 male 768255
korea 1945 30-34 female 799205
korea 1945 35-39 male 675127
korea 1945 35-39 female 681636
korea 1945 40-44 male 575438
korea 1945 40-44 female 563422
korea 1945 45-49 male 554141
korea 1945 45-49 female 531905
korea 1945 50-54 male 451506
korea 1945 50-54 female 451128
korea 1945 55-59 male 366961
korea 1945 55-59 female 377014
korea 1945 60-64 male 293122
korea 1945 60-64 female 314342
korea 1945 65-69 male 200965
korea 1945 65-69 female 225093
korea 1945 70-74 male 136940
korea 1945 70-74 female 165109
korea 1945 75-79 male 65901
korea 1945 75-79 female 88320
korea 1945 80-84 male 24464
korea 1945 80-84 female 36987
korea 1945 85+ male 11121
korea 1945 85+ female 20849
korea 1950 0-4 male 0
korea 1950 0-4 female 0
korea 1950 5-9 male 2991580
korea 1950 5-9 female 2886197
korea 1950 10-14 male 1282027
korea 1950 10-14 female 1232613
korea 1950 15-19 male 1029625
korea 1950 15-19 female 993026
korea 1950 20-24 male 863715
korea 1950 20-24 female 854011
korea 1950 25-29 male 759752
korea 1950 25-29 female 735565
korea 1950 30-34 male 652043
korea 1950 30-34 female 613678
korea 1950 35-39 male 589925
korea 1950 35-39 female 552259
korea 1950 40-44 male 488270
korea 1950 40-44 female 459063
korea 1950 45-49 male 393673
korea 1950 45-49 female 380476
korea 1950 50-54 male 340893
korea 1950 50-54 female 340741
korea 1950 55-59 male 294192
korea 1950 55-59 female 322327
korea 1950 60-64 male 485605
korea 1950 60-64 female 590121
korea 1950 65-69 male 0
korea 1950 65-69 female 0
korea 1950 70-74 male 0
korea 1950 70-74 female 0
korea 1950 75-79 male 0
korea 1950 75-79 female 0
korea 1950 80-84 male 0
korea 1950 80-84 female 0
korea 1950 85+ male 0
korea 1950 85+ female 0
korea 1955 0-4 male 1742778
korea 1955 0-4 female 1633870
korea 1955 5-9 male 1495871
korea 1955 5-9 female 1371517
korea 1955 10-14 male 1371568
korea 1955 10-14 female 1249453
korea 1955 15-19 male 1256904
korea 1955 15-19 female 1138007
korea 1955 20-24 male 808143
korea 1955 20-24 female 946257
korea 1955 25-29 male 635243
korea 1955 25-29 female 803884
korea 1955 30-34 male 679017
korea 1955 30-34 female 710431
korea 1955 35-39 male 585542
korea 1955 35-39 female 583037
korea 1955 40-44 male 530158
korea 1955 40-44 female 523904
korea 1955 45-49 male 496405
korea 1955 45-49 female 451476
korea 1955 50-54 male 337483
korea 1955 50-54 female 342418
korea 1955 55-59 male 295560
korea 1955 55-59 female 319434
korea 1955 60-64 male 217405
korea 1955 60-64 female 263101
korea 1955 65-69 male 156405
korea 1955 65-69 female 203113
korea 1955 70-74 male 80971
korea 1955 70-74 female 110771
korea 1955 75-79 male 0
korea 1955 75-79 female 0
korea 1955 80-84 male 0
korea 1955 80-84 female 0
korea 1955 85+ male 0
korea 1955 85+ female 0
korea 1960 0-4 male 1820312
korea 1960 0-4 female 1729252
korea 1960 5-9 male 1958379
korea 1960 5-9 female 1823172
korea 1960 10-14 male 1480279
korea 1960 10-14 female 1341976
korea 1960 15-19 male 1248791
korea 1960 15-19 female 1134363
korea 1960 20-24 male 1175602
korea 1960 20-24 female 1103847
korea 1960 25-29 male 916751
korea 1960 25-29 female 996435
korea 1960 30-34 male 727096
korea 1960 30-34 female 829238
korea 1960 35-39 male 687559
korea 1960 35-39 female 729178
korea 1960 40-44 male 598867
korea 1960 40-44 female 588603
korea 1960 45-49 male 518017
korea 1960 45-49 female 515744
korea 1960 50-54 male 444283
korea 1960 50-54 female 440293
korea 1960 55-59 male 318745
korea 1960 55-59 female 345793
korea 1960 60-64 male 257447
korea 1960 60-64 female 309124
korea 1960 65-69 male 174206
korea 1960 65-69 female 230526
korea 1960 70-74 male 120719
korea 1960 70-74 female 173283
korea 1960 75-79 male 55635
korea 1960 75-79 female 85028
korea 1960 80-84 male 25744
korea 1960 80-84 female 42696
korea 1960 85+ male 8186
korea 1960 85+ female 15983
korea 1965 0-4 male 2318664
korea 1965 0-4 female 2162257
korea 1965 5-9 male 2391295
korea 1965 5-9 female 2221577
korea 1965 10-14 male 1857472
korea 1965 10-14 female 1732555
korea 1965 15-19 male 1399246
korea 1965 15-19 female 1308900
korea 1965 20-24 male 1203321
korea 1965 20-24 female 1095362
korea 1965 25-29 male 1116120
korea 1965 25-29 female 1128214
korea 1965 30-34 male 975994
korea 1965 30-34 female 983780
korea 1965 35-39 male 734345
korea 1965 35-39 female 818450
korea 1965 40-44 male 659331
korea 1965 40-44 female 687495
korea 1965 45-49 male 559889
korea 1965 45-49 female 556646
korea 1965 50-54 male 465588
korea 1965 50-54 female 482044
korea 1965 55-59 male 376426
korea 1965 55-59 female 412297
korea 1965 60-64 male 248035
korea 1965 60-64 female 302918
korea 1965 65-69 male 182750
korea 1965 65-69 female 254634
korea 1965 70-74 male 104987
korea 1965 70-74 female 162301
korea 1965 75-79 male 62232
korea 1965 75-79 female 109437
korea 1965 80-84 male 20423
korea 1965 80-84 female 39207
korea 1965 85+ male 7932
korea 1965 85+ female 17416
korea 1970 0-4 male 2228736
korea 1970 0-4 female 2087407
korea 1970 5-9 male 2349086
korea 1970 5-9 female 2182856
korea 1970 10-14 male 2274301
korea 1970 10-14 female 2119047
korea 1970 15-19 male 1573179
korea 1970 15-19 female 1514955
korea 1970 20-24 male 1298687
korea 1970 20-24 female 1224483
korea 1970 25-29 male 1096819
korea 1970 25-29 female 1107474
korea 1970 30-34 male 1108853
korea 1970 30-34 female 1084426
korea 1970 35-39 male 915069
korea 1970 35-39 female 939131
korea 1970 40-44 male 691062
korea 1970 40-44 female 770841
korea 1970 45-49 male 628934
korea 1970 45-49 female 655694
korea 1970 50-54 male 506554
korea 1970 50-54 female 517981
korea 1970 55-59 male 407895
korea 1970 55-59 female 447146
korea 1970 60-64 male 302362
korea 1970 60-64 female 362896
korea 1970 65-69 male 181431
korea 1970 65-69 female 253284
korea 1970 70-74 male 120835
korea 1970 70-74 female 194609
korea 1970 75-79 male 60931
korea 1970 75-79 female 114485
korea 1970 80-84 male 26355
korea 1970 80-84 female 57481
korea 1970 85+ male 8526
korea 1970 85+ female 21441
korea 1975 0-4 male 2189456
korea 1975 0-4 female 2037904
korea 1975 5-9 male 2302542
korea 1975 5-9 female 2151156
korea 1975 10-14 male 2348676
korea 1975 10-14 female 2178654
korea 1975 15-19 male 2124156
korea 1975 15-19 female 2022756
korea 1975 20-24 male 1611767
korea 1975 20-24 female 1511359
korea 1975 25-29 male 1271743
korea 1975 25-29 female 1235707
korea 1975 30-34 male 1131486
korea 1975 30-34 female 1092752
korea 1975 35-39 male 1111449
korea 1975 35-39 female 1077695
korea 1975 40-44 male 885250
korea 1975 40-44 female 914903
korea 1975 45-49 male 649961
korea 1975 45-49 female 748859
korea 1975 50-54 male 576664
korea 1975 50-54 female 620715
korea 1975 55-59 male 449224
korea 1975 55-59 female 489981
korea 1975 60-64 male 334479
korea 1975 60-64 female 403073
korea 1975 65-69 male 229780
korea 1975 65-69 female 313047
korea 1975 70-74 male 123219
korea 1975 70-74 female 201994
korea 1975 75-79 male 68241
korea 1975 75-79 female 136049
korea 1975 80-84 male 26304
korea 1975 80-84 female 64613
korea 1975 85+ male 10843
korea 1975 85+ female 32509
korea 1980 0-4 male 1963963
korea 1980 0-4 female 1830729
korea 1980 5-9 male 2282813
korea 1980 5-9 female 2138133
korea 1980 10-14 male 2293386
korea 1980 10-14 female 2146751
korea 1980 15-19 male 2186973
korea 1980 15-19 female 2052756
korea 1980 20-24 male 2067729
korea 1980 20-24 female 1985909
korea 1980 25-29 male 1540965
korea 1980 25-29 female 1541207
korea 1980 30-34 male 1293533
korea 1980 30-34 female 1225708
korea 1980 35-39 male 1127158
korea 1980 35-39 female 1096183
korea 1980 40-44 male 1080457
korea 1980 40-44 female 1051194
korea 1980 45-49 male 868659
korea 1980 45-49 female 913154
korea 1980 50-54 male 609166
korea 1980 50-54 female 716759
korea 1980 55-59 male 521797
korea 1980 55-59 female 603556
korea 1980 60-64 male 373222
korea 1980 60-64 female 448835
korea 1980 65-69 male 260597
korea 1980 65-69 female 359686
korea 1980 70-74 male 161867
korea 1980 70-74 female 263229
korea 1980 75-79 male 74175
korea 1980 75-79 female 155111
korea 1980 80-84 male 31546
korea 1980 80-84 female 86661
korea 1980 85+ male 11296
korea 1980 85+ female 41946
korea 1985 0-4 male 1922758
korea 1985 0-4 female 1779797
korea 1985 5-9 male 2025353
korea 1985 5-9 female 1890997
korea 1985 10-14 male 2310570
korea 1985 10-14 female 2165415
korea 1985 15-19 male 2227322
korea 1985 15-19 female 2088942
korea 1985 20-24 male 2185720
korea 1985 20-24 female 2059370
korea 1985 25-29 male 2027185
korea 1985 25-29 female 2043223
korea 1985 30-34 male 1589610
korea 1985 30-34 female 1525628
korea 1985 35-39 male 1324369
korea 1985 35-39 female 1256812
korea 1985 40-44 male 1108685
korea 1985 40-44 female 1078823
korea 1985 45-49 male 1042989
korea 1985 45-49 female 1046223
korea 1985 50-54 male 809619
korea 1985 50-54 female 885640
korea 1985 55-59 male 560580
korea 1985 55-59 female 707177
korea 1985 60-64 male 440387
korea 1985 60-64 female 566489
korea 1985 65-69 male 306710
korea 1985 65-69 female 416107
korea 1985 70-74 male 190553
korea 1985 70-74 female 310701
korea 1985 75-79 male 103513
korea 1985 75-79 female 208577
korea 1985 80-84 male 36163
korea 1985 80-84 female 101497
korea 1985 85+ male 15140
korea 1985 85+ female 60588
korea 1990 0-4 male 1726863
korea 1990 0-4 female 1552927
korea 1990 5-9 male 1999001
korea 1990 5-9 female 1853507
korea 1990 10-14 male 2054494
korea 1990 10-14 female 1937423
korea 1990 15-19 male 2267129
korea 1990 15-19 female 2181867
korea 1990 20-24 male 2294290
korea 1990 20-24 female 2102019
korea 1990 25-29 male 2160912
korea 1990 25-29 female 2172588
korea 1990 30-34 male 2142825
korea 1990 30-34 female 2064889
korea 1990 35-39 male 1648205
korea 1990 35-39 female 1553005
korea 1990 40-44 male 1315182
korea 1990 40-44 female 1224087
korea 1990 45-49 male 1100966
korea 1990 45-49 female 1075924
korea 1990 50-54 male 994511
korea 1990 50-54 female 1015507
korea 1990 55-59 male 760993
korea 1990 55-59 female 861860
korea 1990 60-64 male 494845
korea 1990 60-64 female 662214
korea 1990 65-69 male 375752
korea 1990 65-69 female 524562
korea 1990 70-74 male 233308
korea 1990 70-74 female 361808
korea 1990 75-79 male 127905
korea 1990 75-79 female 249266
korea 1990 80-84 male 54861
korea 1990 80-84 female 140451
korea 1990 85+ male 18830
korea 1990 85+ female 75496
korea 1995 0-4 male 1821350
korea 1995 0-4 female 1606059
korea 1995 5-9 male 1626922
korea 1995 5-9 female 1469193
korea 1995 10-14 male 1913801
korea 1995 10-14 female 1798179
korea 1995 15-19 male 1987044
korea 1995 15-19 female 1876447
korea 1995 20-24 male 2237940
korea 1995 20-24 female 2066438
korea 1995 25-29 male 2078417
korea 1995 25-29 female 2059496
korea 1995 30-34 male 2146351
korea 1995 30-34 female 2083888
korea 1995 35-39 male 2103016
korea 1995 35-39 female 2030848
korea 1995 40-44 male 1579850
korea 1995 40-44 female 1491251
korea 1995 45-49 male 1261509
korea 1995 45-49 female 1202786
korea 1995 50-54 male 1028887
korea 1995 50-54 female 1034881
korea 1995 55-59 male 923625
korea 1995 55-59 female 989836
korea 1995 60-64 male 673719
korea 1995 60-64 female 821363
korea 1995 65-69 male 420873
korea 1995 65-69 female 623106
korea 1995 70-74 male 293696
korea 1995 70-74 female 468848
korea 1995 75-79 male 160498
korea 1995 75-79 female 295175
korea 1995 80-84 male 71267
korea 1995 80-84 female 174924
korea 1995 85+ male 28370
korea 1995 85+ female 103448
korea 2000 0-4 male 1641166
korea 2000 0-4 female 1489092
korea 2000 5-9 male 1813446
korea 2000 5-9 female 1612610
korea 2000 10-14 male 1615013
korea 2000 10-14 female 1449429
korea 2000 15-19 male 1913885
korea 2000 15-19 female 1777699
korea 2000 20-24 male 2028206
korea 2000 20-24 female 1819980
korea 2000 25-29 male 2057321
korea 2000 25-29 female 2039657
korea 2000 30-34 male 2068202
korea 2000 30-34 female 2025026
korea 2000 35-39 male 2117492
korea 2000 35-39 female 2069461
korea 2000 40-44 male 2029413
korea 2000 40-44 female 1966923
korea 2000 45-49 male 1496104
korea 2000 45-49 female 1455919
korea 2000 50-54 male 1185239
korea 2000 50-54 female 1165011
korea 2000 55-59 male 959680
korea 2000 55-59 female 1008792
korea 2000 60-64 male 836465
korea 2000 60-64 female 952384
korea 2000 65-69 male 593974
korea 2000 65-69 female 782148
korea 2000 70-74 male 348226
korea 2000 70-74 female 569895
korea 2000 75-79 male 211347
korea 2000 75-79 female 389251
korea 2000 80-84 male 94135
korea 2000 80-84 female 209624
korea 2000 85+ male 39715
korea 2000 85+ female 133491
korea 2005 0-4 male 1237301
korea 2005 0-4 female 1145049
korea 2005 5-9 male 1654228
korea 2005 5-9 female 1514659
korea 2005 10-14 male 1816328
korea 2005 10-14 female 1618573
korea 2005 15-19 male 1626378
korea 2005 15-19 female 1474145
korea 2005 20-24 male 1915902
korea 2005 20-24 female 1746221
korea 2005 25-29 male 1858332
korea 2005 25-29 female 1813515
korea 2005 30-34 male 2059913
korea 2005 30-34 female 2036369
korea 2005 35-39 male 2065668
korea 2005 35-39 female 2047117
korea 2005 40-44 male 2082427
korea 2005 40-44 female 2040614
korea 2005 45-49 male 1961859
korea 2005 45-49 female 1939040
korea 2005 50-54 male 1426597
korea 2005 50-54 female 1428700
korea 2005 55-59 male 1126997
korea 2005 55-59 female 1151441
korea 2005 60-64 male 897384
korea 2005 60-64 female 991469
korea 2005 65-69 male 755949
korea 2005 65-69 female 924118
korea 2005 70-74 male 514241
korea 2005 70-74 female 738493
korea 2005 75-79 male 270632
korea 2005 75-79 female 496238
korea 2005 80-84 male 136705
korea 2005 80-84 female 295554
korea 2005 85+ male 58819
korea 2005 85+ female 174469
korea 2010 0-4 male 1142220
korea 2010 0-4 female 1076864
korea 2010 5-9 male 1243294
korea 2010 5-9 female 1151369
korea 2010 10-14 male 1654964
korea 2010 10-14 female 1518262
korea 2010 15-19 male 1826179
korea 2010 15-19 female 1612235
korea 2010 20-24 male 1625371
korea 2010 20-24 female 1430049
korea 2010 25-29 male 1802805
korea 2010 25-29 female 1736144
korea 2010 30-34 male 1866397
korea 2010 30-34 female 1828951
korea 2010 35-39 male 2060233
korea 2010 35-39 female 2038914
korea 2010 40-44 male 2071431
korea 2010 40-44 female 2059992
korea 2010 45-49 male 2044641
korea 2010 45-49 female 2028717
korea 2010 50-54 male 1887973
korea 2010 50-54 female 1910158
korea 2010 55-59 male 1360747
korea 2010 55-59 female 1405948
korea 2010 60-64 male 1057035
korea 2010 60-64 female 1125201
korea 2010 65-69 male 833242
korea 2010 65-69 female 978926
korea 2010 70-74 male 672894
korea 2010 70-74 female 893120
korea 2010 75-79 male 410726
korea 2010 75-79 female 673641
korea 2010 80-84 male 186008
korea 2010 80-84 female 409501
korea 2010 85+ male 94736
korea 2010 85+ female 271873
japan 1925 0-4 male 4160479
japan 1925 0-4 female 4104104
japan 1925 5-9 male 3491171
japan 1925 5-9 female 3433261
japan 1925 10-14 male 3410991
japan 1925 10-14 female 3324039
japan 1925 15-19 male 2988370
japan 1925 15-19 female 2896907
japan 1925 20-24 male 2574799
japan 1925 20-24 female 2485728
japan 1925 25-29 male 2256502
japan 1925 25-29 female 2136969
japan 1925 30-34 male 1920177
japan 1925 30-34 female 1795910
japan 1925 35-39 male 1768538
japan 1925 35-39 female 1680839
japan 1925 40-44 male 1624224
japan 1925 40-44 female 1597541
japan 1925 45-49 male 1539488
japan 1925 45-49 female 1515661
japan 1925 50-54 male 1223831
japan 1925 50-54 female 1227072
japan 1925 55-59 male 981235
japan 1925 55-59 female 1009582
japan 1925 60-64 male 754000
japan 1925 60-64 female 814341
japan 1925 65-69 male 601475
japan 1925 65-69 female 692865
japan 1925 70-74 male 403555
japan 1925 70-74 female 515625
japan 1925 75-79 male 213632
japan 1925 75-79 female 309382
japan 1925 80-84 male 79096
japan 1925 80-84 female 136738
japan 1925 85+ male 21546
japan 1925 85+ female 47149
japan 1930 0-4 male 4543442
japan 1930 0-4 female 4467693
japan 1930 5-9 male 3914786
japan 1930 5-9 female 3852299
japan 1930 10-14 male 3436560
japan 1930 10-14 female 3364485
japan 1930 15-19 male 3318663
japan 1930 15-19 female 3220941
japan 1930 20-24 male 2815406
japan 1930 20-24 female 2716100
japan 1930 25-29 male 2480757
japan 1930 25-29 female 2354877
japan 1930 30-34 male 2175040
japan 1930 30-34 female 2038625
japan 1930 35-39 male 1856905
japan 1930 35-39 female 1727928
japan 1930 40-44 male 1687934
japan 1930 40-44 female 1598544
japan 1930 45-49 male 1525157
japan 1930 45-49 female 1521106
japan 1930 50-54 male 1410576
japan 1930 50-54 female 1420118
japan 1930 55-59 male 1085866
japan 1930 55-59 female 1130237
japan 1930 60-64 male 820315
japan 1930 60-64 female 901770
japan 1930 65-69 male 577193
japan 1930 65-69 female 678637
japan 1930 70-74 male 403984
japan 1930 70-74 female 522617
japan 1930 75-79 male 222451
japan 1930 75-79 female 329267
japan 1930 80-84 male 89183
japan 1930 80-84 female 156278
japan 1930 85+ male 25937
japan 1930 85+ female 58328
japan 1935 0-4 male 4714001
japan 1935 0-4 female 4614500
japan 1935 5-9 male 4303263
japan 1935 5-9 female 4228156
japan 1935 10-14 male 3876774
japan 1935 10-14 female 3808473
japan 1935 15-19 male 3350713
japan 1935 15-19 female 3290204
japan 1935 20-24 male 3036783
japan 1935 20-24 female 3034288
japan 1935 25-29 male 2670248
japan 1935 25-29 female 2569835
japan 1935 30-34 male 2379492
japan 1935 30-34 female 2253145
japan 1935 35-39 male 2093446
japan 1935 35-39 female 1952400
japan 1935 40-44 male 1767627
japan 1935 40-44 female 1638384
japan 1935 45-49 male 1591179
japan 1935 45-49 female 1521655
japan 1935 50-54 male 1404376
japan 1935 50-54 female 1428499
japan 1935 55-59 male 1255092
japan 1935 55-59 female 1316045
japan 1935 60-64 male 916820
japan 1935 60-64 female 1013791
japan 1935 65-69 male 630008
japan 1935 65-69 female 757084
japan 1935 70-74 male 394223
japan 1935 70-74 female 519200
japan 1935 75-79 male 224829
japan 1935 75-79 female 336975
japan 1935 80-84 male 95043
japan 1935 80-84 female 168936
japan 1935 85+ male 30216
japan 1935 85+ female 68445
japan 1940 0-4 male 4619512
japan 1940 0-4 female 4508497
japan 1940 5-9 male 4463439
japan 1940 5-9 female 4370159
japan 1940 10-14 male 4242585
japan 1940 10-14 female 4164516
japan 1940 15-19 male 3717483
japan 1940 15-19 female 3691794
japan 1940 20-24 male 3057395
japan 1940 20-24 female 3046258
japan 1940 25-29 male 2837267
japan 1940 25-29 female 2815917
japan 1940 30-34 male 2507243
japan 1940 30-34 female 2440013
japan 1940 35-39 male 2260747
japan 1940 35-39 female 2162140
japan 1940 40-44 male 1976906
japan 1940 40-44 female 1857152
japan 1940 45-49 male 1649661
japan 1940 45-49 female 1557551
japan 1940 50-54 male 1456632
japan 1940 50-54 female 1430587
japan 1940 55-59 male 1240737
japan 1940 55-59 female 1318804
japan 1940 60-64 male 1049207
japan 1940 60-64 female 1178205
japan 1940 65-69 male 702545
japan 1940 65-69 female 852617
japan 1940 70-74 male 421186
japan 1940 70-74 female 573720
japan 1940 75-79 male 215952
japan 1940 75-79 female 330456
japan 1940 80-84 male 90602
japan 1940 80-84 female 163525
japan 1940 85+ male 31023
japan 1940 85+ female 72076
japan 1945 0-4 male 4682797
japan 1945 0-4 female 4567621
japan 1945 5-9 male 4338961
japan 1945 5-9 female 4242440
japan 1945 10-14 male 4365844
japan 1945 10-14 female 4279423
japan 1945 15-19 male 3849481
japan 1945 15-19 female 3971049
japan 1945 20-24 male 2024120
japan 1945 20-24 female 3440564
japan 1945 25-29 male 1603664
japan 1945 25-29 female 2811495
japan 1945 30-34 male 1805587
japan 1945 30-34 female 2641750
japan 1945 35-39 male 1982773
japan 1945 35-39 female 2324932
japan 1945 40-44 male 2046909
japan 1945 40-44 female 2043299
japan 1945 45-49 male 1829696
japan 1945 45-49 female 1757230
japan 1945 50-54 male 1506234
japan 1945 50-54 female 1442574
japan 1945 55-59 male 1289547
japan 1945 55-59 female 1307731
japan 1945 60-64 male 1005064
japan 1945 60-64 female 1137204
japan 1945 65-69 male 775188
japan 1945 65-69 female 957206
japan 1945 70-74 male 462867
japan 1945 70-74 female 632271
japan 1945 75-79 male 214842
japan 1945 75-79 female 337049
japan 1945 80-84 male 84073
japan 1945 80-84 female 152668
japan 1945 85+ male 26412
japan 1945 85+ female 57539
japan 1950 0-4 male 5792551
japan 1950 0-4 female 5558029
japan 1950 5-9 male 4877311
japan 1950 5-9 female 4747167
japan 1950 10-14 male 4456939
japan 1950 10-14 female 4354415
japan 1950 15-19 male 4367794
japan 1950 15-19 female 4301651
japan 1950 20-24 male 3871815
japan 1950 20-24 female 3932721
japan 1950 25-29 male 2847983
japan 1950 25-29 female 3398305
japan 1950 30-34 male 2382599
japan 1950 30-34 female 2871802
japan 1950 35-39 male 2396611
japan 1950 35-39 female 2698407
japan 1950 40-44 male 2217547
japan 1950 40-44 female 2307924
japan 1950 45-49 male 2035222
japan 1950 45-49 female 2007152
japan 1950 50-54 male 1733836
japan 1950 50-54 female 1687560
japan 1950 55-59 male 1392572
japan 1950 55-59 female 1387462
japan 1950 60-64 male 1120403
japan 1950 60-64 female 1208946
japan 1950 65-69 male 803800
japan 1950 65-69 female 986148
japan 1950 70-74 male 545748
japan 1950 70-74 female 749903
japan 1950 75-79 male 270523
japan 1950 75-79 female 423156
japan 1950 80-84 male 96600
japan 1950 80-84 female 182654
japan 1950 85+ male 29003
japan 1950 85+ female 67509
japan 1955 0-4 male 4794426
japan 1955 0-4 female 4587086
japan 1955 5-9 male 5694447
japan 1955 5-9 female 5461568
japan 1955 10-14 male 4855556
japan 1955 10-14 female 4729814
japan 1955 15-19 male 4383128
japan 1955 15-19 female 4325947
japan 1955 20-24 male 4231701
japan 1955 20-24 female 4244253
japan 1955 25-29 male 3802724
japan 1955 25-29 female 3860355
japan 1955 30-34 male 2817154
japan 1955 30-34 female 3345468
japan 1955 35-39 male 2336529
japan 1955 35-39 female 2818160
japan 1955 40-44 male 2340429
japan 1955 40-44 female 2640077
japan 1955 45-49 male 2149102
japan 1955 45-49 female 2248891
japan 1955 50-54 male 1941081
japan 1955 50-54 female 1935698
japan 1955 55-59 male 1617760
japan 1955 55-59 female 1610602
japan 1955 60-64 male 1235983
japan 1955 60-64 female 1281573
japan 1955 65-69 male 925400
japan 1955 65-69 female 1057199
japan 1955 70-74 male 593776
japan 1955 70-74 female 798886
japan 1955 75-79 male 342059
japan 1955 75-79 female 533642
japan 1955 80-84 male 133192
japan 1955 80-84 female 244595
japan 1955 85+ male 39681
japan 1955 85+ female 94441
japan 1960 0-4 male 4073749
japan 1960 0-4 female 3891079
japan 1960 5-9 male 4770578
japan 1960 5-9 female 4568563
japan 1960 10-14 male 5677909
japan 1960 10-14 female 5452281
japan 1960 15-19 male 4713854
japan 1960 15-19 female 4665819
japan 1960 20-24 male 4160096
japan 1960 20-24 female 4230886
japan 1960 25-29 male 4129166
japan 1960 25-29 female 4150358
japan 1960 30-34 male 3774040
japan 1960 30-34 female 3801653
japan 1960 35-39 male 2782870
japan 1960 35-39 female 3300265
japan 1960 40-44 male 2291120
japan 1960 40-44 female 2766827
japan 1960 45-49 male 2271959
japan 1960 45-49 female 2578854
japan 1960 50-54 male 2053737
japan 1960 50-54 female 2177467
japan 1960 55-59 male 1813371
japan 1960 55-59 female 1854005
japan 1960 60-64 male 1446757
japan 1960 60-64 female 1506251
japan 1960 65-69 male 1035042
japan 1960 65-69 female 1144248
japan 1960 70-74 male 698672
japan 1960 70-74 female 878355
japan 1960 75-79 male 379767
japan 1960 75-79 female 583630
japan 1960 80-84 male 170599
japan 1960 80-84 female 317064
japan 1960 85+ male 57103
japan 1960 85+ female 133500
japan 1965 0-4 male 4204772
japan 1965 0-4 female 4036835
japan 1965 5-9 male 4056194
japan 1965 5-9 female 3913926
japan 1965 10-14 male 4738325
japan 1965 10-14 female 4579178
japan 1965 15-19 male 5527355
japan 1965 15-19 female 5420641
japan 1965 20-24 male 4523969
japan 1965 20-24 female 4603550
japan 1965 25-29 male 4191561
japan 1965 25-29 female 4243666
japan 1965 30-34 male 4180969
japan 1965 30-34 female 4143948
japan 1965 35-39 male 3773472
japan 1965 35-39 female 3780525
japan 1965 40-44 male 2748642
japan 1965 40-44 female 3256379
japan 1965 45-49 male 2240740
japan 1965 45-49 female 2718592
japan 1965 50-54 male 2187487
japan 1965 50-54 female 2503984
japan 1965 55-59 male 1942543
japan 1965 55-59 female 2087591
japan 1965 60-64 male 1635046
japan 1965 60-64 female 1733582
japan 1965 65-69 male 1226741
japan 1965 65-69 female 1354725
japan 1965 70-74 male 795372
japan 1965 70-74 female 965246
japan 1965 75-79 male 455411
japan 1965 75-79 female 650726
japan 1965 80-84 male 188750
japan 1965 80-84 female 345164
japan 1965 85+ male 74765
japan 1965 85+ female 178714
japan 1970 0-4 male 4564915
japan 1970 0-4 female 4342649
japan 1970 5-9 male 4225903
japan 1970 5-9 female 4041433
japan 1970 10-14 male 4066571
japan 1970 10-14 female 3911308
japan 1970 15-19 male 4622873
japan 1970 15-19 female 4544171
japan 1970 20-24 male 5344885
japan 1970 20-24 female 5382751
japan 1970 25-29 male 4545780
japan 1970 25-29 female 4602418
japan 1970 30-34 male 4215776
japan 1970 30-34 female 4225557
japan 1970 35-39 male 4154678
japan 1970 35-39 female 4118164
japan 1970 40-44 male 3690875
japan 1970 40-44 female 3702753
japan 1970 45-49 male 2696819
japan 1970 45-49 female 3222878
japan 1970 50-54 male 2172383
japan 1970 50-54 female 2669007
japan 1970 55-59 male 2055135
japan 1970 55-59 female 2400078
japan 1970 60-64 male 1766393
japan 1970 60-64 female 1985726
japan 1970 65-69 male 1407870
japan 1970 65-69 female 1597716
japan 1970 70-74 male 968076
japan 1970 70-74 female 1182330
japan 1970 75-79 male 536369
japan 1970 75-79 female 744062
japan 1970 80-84 male 243532
japan 1970 80-84 female 413046
japan 1970 85+ male 90344
japan 1970 85+ female 209947
japan 1975 0-4 male 5127359
japan 1975 0-4 female 4873248
japan 1975 5-9 male 4583653
japan 1975 5-9 female 4354368
japan 1975 10-14 male 4237041
japan 1975 10-14 female 4045023
japan 1975 15-19 male 4040280
japan 1975 15-19 female 3908266
japan 1975 20-24 male 4563526
japan 1975 20-24 female 4507983
japan 1975 25-29 male 5426289
japan 1975 25-29 female 5368294
japan 1975 30-34 male 4624591
japan 1975 30-34 female 4621200
japan 1975 35-39 male 4212566
japan 1975 35-39 female 4209754
japan 1975 40-44 male 4125063
japan 1975 40-44 female 4099007
japan 1975 45-49 male 3656501
japan 1975 45-49 female 3704909
japan 1975 50-54 male 2616771
japan 1975 50-54 female 3164934
japan 1975 55-59 male 2072676
japan 1975 55-59 female 2600973
japan 1975 60-64 male 1935823
japan 1975 60-64 female 2347911
japan 1975 65-69 male 1571228
japan 1975 65-69 female 1877809
japan 1975 70-74 male 1147922
japan 1975 70-74 female 1427960
japan 1975 75-79 male 688306
japan 1975 75-79 female 952701
japan 1975 80-84 male 307763
japan 1975 80-84 female 500940
japan 1975 85+ male 122647
japan 1975 85+ female 268153
japan 1980 0-4 male 4366100
japan 1980 0-4 female 4149316
japan 1980 5-9 male 5142487
japan 1980 5-9 female 4889547
japan 1980 10-14 male 4594813
japan 1980 10-14 female 4364815
japan 1980 15-19 male 4223685
japan 1980 15-19 female 4048560
japan 1980 20-24 male 3960116
japan 1980 20-24 female 3880910
japan 1980 25-29 male 4545468
japan 1980 25-29 female 4495887
japan 1980 30-34 male 5421545
japan 1980 30-34 female 5350186
japan 1980 35-39 male 4594716
japan 1980 35-39 female 4606865
japan 1980 40-44 male 4158990
japan 1980 40-44 female 4178510
japan 1980 45-49 male 4033146
japan 1980 45-49 female 4057241
japan 1980 50-54 male 3546963
japan 1980 50-54 female 3653059
japan 1980 55-59 male 2511379
japan 1980 55-59 female 3102126
japan 1980 60-64 male 1945930
japan 1980 60-64 female 2519317
japan 1980 65-69 male 1743659
japan 1980 65-69 female 2221022
japan 1980 70-74 male 1317661
japan 1980 70-74 female 1705316
japan 1980 75-79 male 848714
japan 1980 75-79 female 1187971
japan 1980 80-84 male 417715
japan 1980 80-84 female 675928
japan 1980 85+ male 171959
japan 1980 85+ female 357411
japan 1985 0-4 male 3818777
japan 1985 0-4 female 3640486
japan 1985 5-9 male 4373058
japan 1985 5-9 female 4158776
japan 1985 10-14 male 5146970
japan 1985 10-14 female 4895151
japan 1985 15-19 male 4600427
japan 1985 15-19 female 4379520
japan 1985 20-24 male 4165995
japan 1985 20-24 female 4034559
japan 1985 25-29 male 3948330
japan 1985 25-29 female 3875072
japan 1985 30-34 male 4558265
japan 1985 30-34 female 4495959
japan 1985 35-39 male 5398230
japan 1985 35-39 female 5339814
japan 1985 40-44 male 4551877
japan 1985 40-44 female 4583077
japan 1985 45-49 male 4092121
japan 1985 45-49 female 4144493
japan 1985 50-54 male 3926414
japan 1985 50-54 female 4006580
japan 1985 55-59 male 3409374
japan 1985 55-59 female 3590371
japan 1985 60-64 male 2379902
japan 1985 60-64 female 3025636
japan 1985 65-69 male 1781008
japan 1985 65-69 female 2412411
japan 1985 70-74 male 1503595
japan 1985 70-74 female 2059802
japan 1985 75-79 male 1017428
japan 1985 75-79 female 1475915
japan 1985 80-84 male 542243
japan 1985 80-84 female 890694
japan 1985 85+ male 255975
japan 1985 85+ female 529272
japan 1990 0-4 male 3326039
japan 1990 0-4 female 3166858
japan 1990 5-9 male 3821833
japan 1990 5-9 female 3644724
japan 1990 10-14 male 4369880
japan 1990 10-14 female 4156905
japan 1990 15-19 male 5122215
japan 1990 15-19 female 4884872
japan 1990 20-24 male 4468199
japan 1990 20-24 female 4331922
japan 1990 25-29 male 4078469
japan 1990 25-29 female 3992244
japan 1990 30-34 male 3925353
japan 1990 30-34 female 3862332
japan 1990 35-39 male 4524829
japan 1990 35-39 female 4478951
japan 1990 40-44 male 5349985
japan 1990 40-44 female 5308305
japan 1990 45-49 male 4482298
japan 1990 45-49 female 4535714
japan 1990 50-54 male 3997248
japan 1990 50-54 female 4091138
japan 1990 55-59 male 3783367
japan 1990 55-59 female 3941521
japan 1990 60-64 male 3236549
japan 1990 60-64 female 3508465
japan 1990 65-69 male 2194783
japan 1990 65-69 female 2908793
japan 1990 70-74 male 1559972
japan 1990 70-74 female 2257562
japan 1990 75-79 male 1197457
japan 1990 75-79 female 1820756
japan 1990 80-84 male 678385
japan 1990 80-84 female 1154473
japan 1990 85+ male 357040
japan 1990 85+ female 765374
japan 1995 0-4 male 3070015
japan 1995 0-4 female 2925239
japan 1995 5-9 male 3349827
japan 1995 5-9 female 3190844
japan 1995 10-14 male 3826968
japan 1995 10-14 female 3650837
japan 1995 15-19 male 4385775
japan 1995 15-19 female 4172183
japan 1995 20-24 male 5041228
japan 1995 20-24 female 4853773
japan 1995 25-29 male 4452125
japan 1995 25-29 female 4336016
japan 1995 30-34 male 4113849
japan 1995 30-34 female 4012606
japan 1995 35-39 male 3945809
japan 1995 35-39 female 3876412
japan 1995 40-44 male 4527352
japan 1995 40-44 female 4478720
japan 1995 45-49 male 5328335
japan 1995 45-49 female 5290031
japan 1995 50-54 male 4421787
japan 1995 50-54 female 4500131
japan 1995 55-59 male 3906621
japan 1995 55-59 female 4046859
japan 1995 60-64 male 3611948
japan 1995 60-64 female 3863161
japan 1995 65-69 male 2998706
japan 1995 65-69 female 3397372
japan 1995 70-74 male 1941558
japan 1995 70-74 female 2753609
japan 1995 75-79 male 1260411
japan 1995 75-79 female 2028656
japan 1995 80-84 male 824492
japan 1995 80-84 female 1476273
japan 1995 85+ male 479086
japan 1995 85+ female 1100659
japan 2000 0-4 male 3022521
japan 2000 0-4 female 2881577
japan 2000 5-9 male 3083431
japan 2000 5-9 female 2938358
japan 2000 10-14 male 3353150
japan 2000 10-14 female 3193462
japan 2000 15-19 male 3833984
japan 2000 15-19 female 3654181
japan 2000 20-24 male 4307242
japan 2000 20-24 female 4114218
japan 2000 25-29 male 4965277
japan 2000 25-29 female 4825032
japan 2000 30-34 male 4436818
japan 2000 30-34 female 4339792
japan 2000 35-39 male 4096286
japan 2000 35-39 female 4018579
japan 2000 40-44 male 3924171
japan 2000 40-44 female 3876048
japan 2000 45-49 male 4467772
japan 2000 45-49 female 4448236
japan 2000 50-54 male 5210038
japan 2000 50-54 female 5231952
japan 2000 55-59 male 4290239
japan 2000 55-59 female 4443933
japan 2000 60-64 male 3749528
japan 2000 60-64 female 3986305
japan 2000 65-69 male 3357281
japan 2000 65-69 female 3748658
japan 2000 70-74 male 2670270
japan 2000 70-74 female 3230306
japan 2000 75-79 male 1625822
japan 2000 75-79 female 2524778
japan 2000 80-84 male 915268
japan 2000 80-84 female 1699421
japan 2000 85+ male 653475
japan 2000 85+ female 1579873
japan 2005 0-4 male 2854502
japan 2005 0-4 female 2723585
japan 2005 5-9 male 3036503
japan 2005 5-9 female 2891992
japan 2005 10-14 male 3080678
japan 2005 10-14 female 2933974
japan 2005 15-19 male 3373430
japan 2005 15-19 female 3194950
japan 2005 20-24 male 3754822
japan 2005 20-24 female 3595776
japan 2005 25-29 male 4198551
japan 2005 25-29 female 4081498
japan 2005 30-34 male 4933265
japan 2005 30-34 female 4821592
japan 2005 35-39 male 4402787
japan 2005 35-39 female 4332994
japan 2005 40-44 male 4065470
japan 2005 40-44 female 4015126
japan 2005 45-49 male 3867500
japan 2005 45-49 female 3858361
japan 2005 50-54 male 4383240
japan 2005 50-54 female 4413259
japan 2005 55-59 male 5077369
japan 2005 55-59 female 5177795
japan 2005 60-64 male 4154529
japan 2005 60-64 female 4390100
japan 2005 65-69 male 3545006
japan 2005 65-69 female 3887604
japan 2005 70-74 male 3039743
japan 2005 70-74 female 3597754
japan 2005 75-79 male 2256317
japan 2005 75-79 female 3006484
japan 2005 80-84 male 1222635
japan 2005 80-84 female 2189758
japan 2005 85+ male 810898
japan 2005 85+ female 2115806
japan 2010 0-4 male 2710581
japan 2010 0-4 female 2586167
japan 2010 5-9 male 2859805
japan 2010 5-9 female 2725856
japan 2010 10-14 male 3031943
japan 2010 10-14 female 2889092
japan 2010 15-19 male 3109229
japan 2010 15-19 female 2954128
japan 2010 20-24 male 3266240
japan 2010 20-24 female 3160193
japan 2010 25-29 male 3691723
japan 2010 25-29 female 3601978
japan 2010 30-34 male 4221011
japan 2010 30-34 female 4120486
japan 2010 35-39 male 4950122
japan 2010 35-39 female 4836227
japan 2010 40-44 male 4400375
japan 2010 40-44 female 4341490
japan 2010 45-49 male 4027969
japan 2010 45-49 female 4005147
japan 2010 50-54 male 3809576
japan 2010 50-54 female 3834923
japan 2010 55-59 male 4287489
japan 2010 55-59 female 4376245
japan 2010 60-64 male 4920468
japan 2010 60-64 female 5116781
japan 2010 65-69 male 3921774
japan 2010 65-69 female 4288399
japan 2010 70-74 male 3225503
japan 2010 70-74 female 3737799
japan 2010 75-79 male 2582940
japan 2010 75-79 female 3358073
japan 2010 80-84 male 1692584
japan 2010 80-84 female 2643680
japan 2010 85+ male 1047611
japan 2010 85+ female 2747322
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment