Created
September 5, 2016 09:45
-
-
Save justanotherminh/bc354f112b3555a3058f6bfcf12702bf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
def softmax(logits): | |
e = np.exp(logits) | |
return e / np.expand_dims(e.sum(axis=1), axis=1) | |
X_train, y_train = mnist.train.images, mnist.train.labels | |
X_test, y_test = mnist.test.images, mnist.test.labels | |
data_size = 55000 | |
batch_size = 128 | |
input_dim = 784 | |
output_dim = 10 | |
lr = 0.001 | |
vW, vb = 0., 0. | |
gamma = 0.5 | |
W = np.random.normal(0.0, 0.1, [input_dim, output_dim]) | |
b = np.zeros([1, output_dim]) | |
def predict(x, W, b): | |
a = x.dot(W) + b | |
return softmax(a) | |
def loss(prob, label): | |
ce = -label * np.log(prob) | |
return ce.mean(axis=0).sum() | |
def get_gradient(prob, label, x): | |
# For softmax classifier, dL/dout = out - label | |
dout = prob - label | |
db = dout.sum(axis=0) | |
dW = x.T.dot(dout) | |
return dW, db | |
def get_data_batch(): | |
global X_train, y_train | |
mask = np.random.choice(data_size, batch_size, replace=False) | |
return X_train[mask, :], y_train[mask, :] | |
def train(): | |
global W, b, vW, vb | |
for i in xrange(10000): | |
X, y = get_data_batch() | |
probs = predict(X, W, b) | |
if i % 100 == 0: | |
print 'Loss: %s' % loss(probs, y) | |
dW, db = get_gradient(probs, y, X) | |
# Update parameters | |
vW = gamma * vW + lr * dW | |
vb = gamma * vb + lr * db | |
W -= vW | |
b -= vb | |
np.save('saved_networks/W.npy', W) | |
np.save('saved_networks/b.npy', b) | |
def test(): | |
global X_test, y_test | |
W = np.load('saved_networks/W.npy') | |
b = np.load('saved_networks/b.npy') | |
y = predict(X_test, W, b) | |
acc = y.argmax(axis=1) == y_test.argmax(axis=1) | |
print 'Loss: %s' % loss(y, y_test) | |
print 'Accuracy: %s' % acc.mean() | |
if __name__ == '__main__': | |
test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment