Feel free to use this layer anywhere and/or include to any library with or without notifying us. tldr, do whatever you want.
Devised by justheuristic@, khalman@ and https://github.com/ADmitri42.
import numpy as np | |
import theano.tensor as T | |
from lasagne import init | |
from lasagne.layers import Layer,MergeLayer, InputLayer,flatten | |
class HierarchicalSoftmaxDenseLayer(MergeLayer): | |
""" | |
Wraps theano.tensor.nnet.h_softmax for a more convenient usage as lasagne layer. | |
:param incoming: incoming lasagne layer | |
:param num_units: the number of outputs | |
:param n_classes: the number of intermediate classes of the two-layer hierarchical softmax. | |
It corresponds to the number of outputs of the first softmax. See note at | |
the end. Defaults to sqrt(num_units) or can be inferred from n_outputs_per_class. | |
:param n_outputs_per_class: the number of outputs per intermediate class. | |
See note at the end. int, can be inferred | |
:param W1: lasagne init or a tensor of shape (number of features of the input x, n_classes) | |
the weight matrix of the first softmax, which maps the input x to the | |
probabilities of the classes. | |
:param b1: lasagne init or a tensor of shape (n_classes,) | |
the bias vector of the first softmax layer. | |
:param W2: lasagne init or a tensor of shape | |
(n_classes, number of features of the input x, n_outputs_per_class) | |
the weight matrix of the second softmax, which maps the input x to | |
the probabilities of the outputs. | |
:param b2: tensor of shape (n_classes, n_outputs_per_class) | |
the bias vector of the second softmax layer. | |
:param target: lasagne layer or tensor of shape either (batch_size,) or (batch_size, 1) | |
(optional, default None) | |
contains the indices of the targets for the minibatch | |
input x. For each input, the function computes the output for its | |
corresponding target. If target is None, then all the outputs are | |
computed for each input. | |
Notes | |
----- | |
The product of n_outputs_per_class and n_classes has to be greater or equal | |
to n_outputs. If it is strictly greater, then the irrelevant outputs will | |
be ignored. | |
n_outputs_per_class and n_classes have to be the same as the corresponding | |
dimensions of the tensors of W1, b1, W2 and b2. | |
The most computational efficient configuration is when n_outputs_per_class | |
and n_classes are equal to the square root of n_outputs. | |
""" | |
def __init__(self,incoming,num_units, | |
n_classes='auto', | |
n_outputs_per_class='auto', | |
W1_init = init.GlorotUniform(), | |
b1_init = init.Constant(0), | |
W2_init = init.GlorotUniform(), | |
b2_init = init.Constant(0), | |
target=None, | |
**kwargs): | |
#flatten input layer if it has higher dimensionality | |
if len(incoming.output_shape) != 2: | |
assert len(incoming.output_shape) >=2 | |
incoming = flatten(incoming) | |
incomings = [incoming] | |
#add target if provided (as theano tensor or lasagne layer) | |
if target is not None: | |
#convert tensor to layer | |
if not isinstance(target,Layer): | |
assert target.ndim <=2 | |
if target.ndim ==1: | |
target_shape = (incoming.shape[0],) | |
else: | |
target_shape = (incoming.shape[0],1) | |
target = InputLayer(target_shape, input_var=target,name="target inputlayer") | |
#check shape | |
assert len(target.output_shape) <=2 | |
if len(target.output_shape) ==2: | |
assert target.output_shape[1]==1 | |
incomings.append(target) | |
super(HierarchicalSoftmaxDenseLayer,self).__init__(incomings,**kwargs) | |
#infer classes | |
if n_classes == 'auto': | |
if n_outputs_per_class == 'auto': | |
n_classes = int(np.ceil(num_units**.5)) | |
else: | |
n_classes = int(np.ceil(float(num_units)/n_outputs_per_class)) | |
if n_outputs_per_class == 'auto': | |
assert n_classes != 'auto' | |
n_outputs_per_class = int(np.ceil(float(num_units)/n_classes)) | |
assert n_classes * n_outputs_per_class >= num_units | |
#remember dimensions | |
self.num_units = num_units | |
self.n_classes = n_classes | |
self.n_outputs_per_class = n_outputs_per_class | |
#create params | |
n_inputs = incoming.output_shape[1] | |
self.W1 = self.add_param(W1_init, (n_inputs,self.n_classes), | |
name="W1") | |
self.b1 = self.add_param(b1_init, (self.n_classes,), | |
name="b1",regularizable=False) | |
self.W2 = self.add_param(W2_init, (self.n_classes,n_inputs,self.n_outputs_per_class), | |
name="W2") | |
self.b2 = self.add_param(b2_init, (self.n_classes,self.n_outputs_per_class), | |
name="b2",regularizable=False) | |
def get_output_for(self,inputs,return_probas_anyway=False,**kwargs): | |
""" | |
Returns | |
------- | |
output_probs: tensor of shape (batch_size, n_outputs) or (batch_size) | |
Output of the two-layer hierarchical softmax for input x. If target is | |
not specified (None), then all the outputs are computed and the | |
returned tensor has shape (batch_size, n_outputs). Otherwise, when | |
target is specified, only the corresponding outputs are computed and | |
the returned tensor has thus shape (batch_size,). | |
return_probas_anyway: if True, returns all probabilities even if target is provided. | |
""" | |
input = inputs[0] | |
if len(inputs) == 1 or return_probas_anyway: | |
target = None | |
else: | |
assert len(inputs) ==2 | |
target = inputs[1] | |
return T.nnet.h_softmax(input,input.shape[0], | |
self.num_units,self.n_classes, | |
self.n_outputs_per_class, | |
W1=self.W1,b1=self.b1, | |
W2=self.W2,b2=self.b2, | |
target=target | |
) | |
def get_output_shape_for(self,input_shapes,**kwargs): | |
if len(input_shapes) ==1: | |
return (input_shapes[0][0],self.num_units) | |
else: | |
return (input_shapes[0][0],) | |
Feel free to use this layer anywhere and/or include to any library with or without notifying us. tldr, do whatever you want.
Devised by justheuristic@, khalman@ and https://github.com/ADmitri42.
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Tue Nov 1 22:47:20 2016 \r\n", | |
"+------------------------------------------------------+ \r\n", | |
"| NVIDIA-SMI 361.45 Driver Version: 361.45.11 | \r\n", | |
"|-------------------------------+----------------------+----------------------+\r\n", | |
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n", | |
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\r\n", | |
"|===============================+======================+======================|\r\n", | |
"| 0 GeForce GTX TIT... Off | 0000:02:00.0 Off | N/A |\r\n", | |
"| 22% 50C P8 16W / 250W | 584MiB / 12287MiB | 0% Default |\r\n", | |
"+-------------------------------+----------------------+----------------------+\r\n", | |
"| 1 GeForce GTX 680 Off | 0000:03:00.0 N/A | N/A |\r\n", | |
"| 40% 45C P8 N/A / N/A | 8MiB / 2047MiB | N/A Default |\r\n", | |
"+-------------------------------+----------------------+----------------------+\r\n", | |
" \r\n", | |
"+-----------------------------------------------------------------------------+\r\n", | |
"| Processes: GPU Memory |\r\n", | |
"| GPU PID Type Process name Usage |\r\n", | |
"|=============================================================================|\r\n", | |
"| 0 3530 C /home/apanin/anaconda/bin/python 204MiB |\r\n", | |
"| 0 7414 C /home/apanin/anaconda/bin/python 176MiB |\r\n", | |
"| 0 16363 C /home/apanin/anaconda/bin/python 175MiB |\r\n", | |
"| 1 Not Supported |\r\n", | |
"+-----------------------------------------------------------------------------+\r\n" | |
] | |
} | |
], | |
"source": [ | |
"!nvidia-smi" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"env: THEANO_FLAGS=\"device=gpu0\"\n" | |
] | |
} | |
], | |
"source": [ | |
"%env THEANO_FLAGS=\"device=gpu0\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"Using gpu device 0: GeForce GTX TITAN X (CNMeM is disabled, cuDNN 5005)\n" | |
] | |
} | |
], | |
"source": [ | |
"import theano\n", | |
"import theano.tensor as T\n", | |
"theano.config.floatX='float32'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from lasagne.layers import *\n", | |
"import lasagne\n", | |
"from hierarchical_softmax_layer import HierarchicalSoftmaxDenseLayer" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"l_in = InputLayer([100,256])\n", | |
"target_y = T.ivector()\n", | |
"n_outputs = 10**6\n", | |
"l_out_softmax = DenseLayer(l_in, n_outputs, nonlinearity=lasagne.nonlinearities.softmax)\n", | |
"l_out_hsoftmax = HierarchicalSoftmaxDenseLayer(l_in,n_outputs,target=target_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"data = [(np.random.normal(size=[100,256]).astype('float32'),\n", | |
" np.random.randint(0,n_outputs,size=[100],dtype='int32')) for i in range(100)]\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from lasagne.objectives import categorical_crossentropy as loss\n", | |
"f_softmax = theano.function([l_in.input_var,target_y],loss(get_output(l_out_softmax),target_y).mean())\n", | |
"f_hsoftmax = theano.function([l_in.input_var,target_y],get_output(l_out_hsoftmax).mean())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CPU times: user 4.47 s, sys: 859 ms, total: 5.33 s\n", | |
"Wall time: 5.33 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"#volatile gpu util 80~100%, titanx, NO CNMEM!\n", | |
"for batch in data:\n", | |
" f_softmax(*batch)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CPU times: user 129 ms, sys: 74 ms, total: 203 ms\n", | |
"Wall time: 202 ms\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"#volatile gpu util 90~100%, titanx, NO CNMEM!\n", | |
"for batch in data:\n", | |
" f_hsoftmax(*batch)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |