Skip to content

Instantly share code, notes, and snippets.

@justheuristic
Last active January 30, 2019 17:51
Show Gist options
  • Save justheuristic/f4b6d256be1622e9c9887e6f8f57b5b5 to your computer and use it in GitHub Desktop.
Save justheuristic/f4b6d256be1622e9c9887e6f8f57b5b5 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as p
from matplotlib.collections import PatchCollection
from itertools import chain
import descartes, shapely.geometry as sg # install: !pip3 install --user shapely descartes
deg_sin = lambda a: np.sin(a * (2 * np.pi / 360.0))
deg_cos = lambda a: np.cos(a * (2 * np.pi / 360.0))
def draw_sectors(x, y, proportions, colors, captions=None, r=1.0, offset_angle=225):
if captions is None:
captions = [''] * len(proportions)
assert np.min(proportions) >= 0 and len(proportions) == len(colors) == len(captions)
assert np.shape(colors) in {(len(proportions), 3), (len(proportions), 4)}, 'colors must be rgb or rgba'
canonic_arc = lambda angle1, angle2: sorted([(offset_angle - angle1), (offset_angle - angle2)])
denominator = np.sum(proportions) if any(proportions > 0) else 1.0
d_angles = proportions / denominator * 360.0
angle = 0.0
shell = sg.Polygon([[x - r, y - r], [x + r, y - r], [x + r, y + r], [x - r, y + r]])
patches, annotations = [], []
for d_angle, color, text in zip(d_angles, colors, captions):
if d_angle == 0: continue
theta1, theta2 = canonic_arc(angle, angle + d_angle)
shell = sg.Polygon([[x - r, y - r], [x + r, y - r], [x + r, y + r], [x - r, y + r]])
shifted_theta2 = theta2 if theta2 >= theta1 else theta2 + 360
dx, dy = deg_cos((theta1 + shifted_theta2) / 2), deg_sin((theta1 + shifted_theta2) / 2)
if np.allclose(shifted_theta2 - theta1, 360):
wedge = shell
else:
wedge = sg.Polygon([
(x, y),
(x + 2 * r * deg_cos(theta1), y + 2 * r * deg_sin(theta1)),
(x + 2 * r * (deg_cos(theta1)) + dx,
y + 2 * r * (deg_sin(theta1)) + dy),
(x + 2 * r * (deg_cos(theta2)) + dx,
y + 2 * r * (deg_sin(theta2)) + dy),
(x + 2 * r * deg_cos(theta2), y + 2 * r * deg_sin(theta2)),
])
mesh = shell.intersection(wedge)
patches.append(descartes.PolygonPatch(mesh, color=color))
annotations.append(dict(s=text, xy=(mesh.centroid.x, mesh.centroid.y)))
angle += d_angle
return patches, annotations
def draw_foxtable(data, cmaps, show=True, show_zeros=False, colorbars=True,
annotation_params=None, ticks=False, caption_format='{:0.4}',
**kwargs):
"""
:param data: a 3d array [height, width, n_components] of values of each component
Values should be in [0, 1] and at least one value must be positive
:param cmaps: a list[n_components] of colormaps - mappings from values in data to rgba colors
colormap is any function that takes x \in [0, 1]
and returns RGBA vector with each component also \in [0, 1]
All default colormaps:
https://matplotlib.org/examples/color/colormaps_reference.html
Custom example:
lambda x: [1.0, 1.0 - x, 1.0 - x, 1.0] # white-to-red cmap
"""
assert np.min(data) >= 0.0 and np.max(data) <= 1.0 and np.max(data) > 0
assert len(cmaps) == np.shape(data)[-1]
nrow, ncol, n_components = np.shape(data)
i_grid, j_grid = map(np.ravel, np.meshgrid(np.arange(nrow), np.arange(ncol)))
get_colors = lambda values: np.array([cmap(val) for cmap, val in zip(cmaps, values)])
get_proportions = lambda values: np.ones_like(values) if show_zeros else (values > 0)
get_captions = lambda values: [caption_format.format(value) for value in values]
patches, annotations = zip(*chain(*(
iter(zip(*draw_sectors(j, nrow - i - 1, get_proportions(data[i, j]), get_colors(data[i, j]),
captions=get_captions(data[i, j]), r=0.5)))
for i, j in zip(i_grid, j_grid)
)))
fig, ax = plt.subplots(**kwargs)
ax.add_collection(PatchCollection(patches, match_original=True))
for ann in annotations:
ax.annotate(**ann, **dict(ha='center', va='center', **(annotation_params or {})))
if show:
ax.set_ylim(-0.5, nrow - 0.5)
ax.set_xlim(-0.5, ncol - 0.5)
if ticks:
ax.set_xticks(np.arange(ncol))
ax.set_yticks(np.arange(nrow))
ax.set_yticklabels(np.arange(nrow)[::-1])
else:
ax.set_xticks([])
ax.set_yticks([])
plt.show()
return ax
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment