Skip to content

Instantly share code, notes, and snippets.

@justinmklam
Created December 11, 2020 19:50
Show Gist options
  • Save justinmklam/090d92011c6b7c9510f86b4cb667be92 to your computer and use it in GitHub Desktop.
Save justinmklam/090d92011c6b7c9510f86b4cb667be92 to your computer and use it in GitHub Desktop.
Sample code to show real-time thermal camera images with the MLX90640 on a Raspberry Pi. Sample rate is ~0.6 fps.
##########################################
# MLX90640 Thermal Camera w Raspberry Pi
# -- 2Hz Sampling with Simple Routine
##########################################
#
import time,board,busio
import numpy as np
import adafruit_mlx90640
import matplotlib.pyplot as plt
print("Initializing MLX90640")
i2c = busio.I2C(board.SCL, board.SDA, frequency=800000) # setup I2C
mlx = adafruit_mlx90640.MLX90640(i2c) # begin MLX90640 with I2C comm
mlx.refresh_rate = adafruit_mlx90640.RefreshRate.REFRESH_2_HZ # set refresh rate
mlx_shape = (24,32)
print("Initialized")
# setup the figure for plotting
plt.ion() # enables interactive plotting
fig,ax = plt.subplots(figsize=(12,7))
therm1 = ax.imshow(np.zeros(mlx_shape),vmin=0,vmax=60) #start plot with zeros
cbar = fig.colorbar(therm1) # setup colorbar for temps
cbar.set_label('Temperature [$^{\circ}$C]',fontsize=14) # colorbar label
frame = np.zeros((24*32,)) # setup array for storing all 768 temperatures
t_array = []
print("Starting loop")
while True:
t1 = time.monotonic()
try:
mlx.getFrame(frame) # read MLX temperatures into frame var
data_array = (np.reshape(frame,mlx_shape)) # reshape to 24x32
therm1.set_data(np.fliplr(data_array)) # flip left to right
therm1.set_clim(vmin=np.min(data_array),vmax=np.max(data_array)) # set bounds
cbar.update_normal(therm1) # update colorbar range
plt.title(f"Max Temp: {np.max(data_array):.1f}C")
plt.pause(0.001) # required
#fig.savefig('mlx90640_test_fliplr.png',dpi=300,facecolor='#FCFCFC', bbox_inches='tight') # comment out to speed up
t_array.append(time.monotonic()-t1)
print('Sample Rate: {0:2.1f}fps'.format(len(t_array)/np.sum(t_array)))
except ValueError:
continue # if error, just read again
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment