- conversationId: 6a5872ec-5fe1-415f-b9e9-63dabe2419ef
- endpoint: Deepseek
- title: Translation App Project Outline
- exportAt: 10:58:26 GMT-0600 (Mountain Daylight Time)
- presetId: null
- model: deepseek-chat
- resendFiles: true
- endpoint: Deepseek
- endpointType: custom
- title: Translation App Project Outline
User Help me come up with a project outline for a (human) language translation app. It needs an API and a React v18 and shadcn-ui based frontend.
- Use docker compose.
- Use Supabase.
- Should be in modern, really high quality TypeScript.
- Accept input markdown documents.
- Use background jobs / task scheduler to translate documents.
- Support many LLM backends, user configurable APIs and credentials.
- Customizable target language per job,
translate_job
- Support a customizable system prompt per language.
Help me describe the schema and rest of services required.
Deepseek Here’s a detailed project outline for your human language translation app, including the Translation Service API and a React v18 + shadcn-ui frontend. The outline covers the schema, services, and architecture.
The API will handle document translation using LLM backends, manage jobs, and store results in Supabase. It will be built with Docker Compose for containerization and written in high-quality TypeScript.
- Accept markdown documents as input.
- Use background jobs/task scheduling for translation.
- Support multiple LLM backends (e.g., OpenAI GPT, Anthropic Claude, Cohere, etc.).
- Allow user-configurable API keys and credentials.
- Customizable target language per job.
- Customizable system prompt per language.
The schema will be stored in Supabase and will include the following tables:
-
translate_job
id
(UUID, primary key)user_id
(UUID, foreign key tousers
table)input_document
(text, markdown content)output_document
(text, translated markdown content)source_language
(text, e.g., "en")target_language
(text, e.g., "es")status
(text, e.g., "pending", "in_progress", "completed", "failed")created_at
(timestamp)updated_at
(timestamp)system_prompt
(text, customizable prompt for the LLM)llm_backend
(text, e.g., "openai", "anthropic", "cohere")llm_config
(jsonb, stores API keys, model name, temperature, etc.)
-
users
id
(UUID, primary key)email
(text, unique)password_hash
(text, for authentication)created_at
(timestamp)updated_at
(timestamp)
-
llm_backend_config
id
(UUID, primary key)user_id
(UUID, foreign key tousers
table)backend_name
(text, e.g., "openai")api_key
(text, encrypted)default_model
(text, e.g., "gpt-4")created_at
(timestamp)updated_at
(timestamp)
-
Job Management Service
- Handles creation, updating, and querying of translation jobs.
- Exposes REST endpoints:
POST /jobs
(create a new job)GET /jobs/:id
(get job status and result)GET /jobs
(list all jobs for a user)DELETE /jobs/:id
(delete a job)
-
Translation Service
- Processes translation jobs in the background.
- Uses task scheduling (e.g., BullMQ or Celery) to handle queued jobs.
- Integrates with multiple LLM backends based on user configuration.
-
LLM Backend Integration Service
- Abstracts interactions with different LLM backends.
- Provides a unified interface for sending requests and receiving responses.
-
Authentication Service
- Handles user authentication and authorization.
- Uses Supabase Auth for user management.
-
File Storage Service
- Stores input and output documents (optional, if not using Supabase storage).
-
Authentication
POST /auth/register
(register a new user)POST /auth/login
(log in a user)POST /auth/logout
(log out a user)
-
Translation Jobs
POST /jobs
(create a new translation job)GET /jobs/:id
(get job details)GET /jobs
(list all jobs for the authenticated user)DELETE /jobs/:id
(delete a job)
-
LLM Backend Configuration
POST /llm-config
(add or update LLM backend config)GET /llm-config
(list all LLM backend configs for the user)DELETE /llm-config/:id
(delete an LLM backend config)
The frontend will be a modern, responsive web app built with React v18 and styled using shadcn-ui components.
- User authentication (login, registration, logout).
- Upload markdown documents for translation.
- View and manage translation jobs.
- Configure LLM backends and API keys.
- Customize system prompts for each language.
-
Login / Register
- Forms for user authentication.
-
Dashboard
- Overview of all translation jobs.
- Button to create a new job.
-
Create Job
- Form to upload a markdown document.
- Dropdown to select source and target languages.
- Option to customize the system prompt.
-
Job Details
- View the status of a job (pending, in progress, completed, failed).
- Display the translated document when completed.
-
LLM Backend Configuration
- Form to add or update LLM backend configurations (API keys, model names, etc.).
-
User Settings
- Update user profile and password.
- Header: Navigation bar with links to dashboard, create job, and settings.
- Job Card: Displays job status, source/target languages, and actions (view, delete).
- Markdown Viewer: Renders markdown content with syntax highlighting.
- LLM Config Form: Form to add or update LLM backend configurations.
- Use React Context or Zustand for global state management (e.g., user authentication, job list).
- Use shadcn-ui for pre-built, customizable components.
- Tailwind CSS for utility-first styling.
The app will be containerized using Docker Compose for easy development and deployment.
-
API Service
- Node.js/TypeScript app for the Translation Service API.
- Exposes port 3000.
-
Frontend Service
- React v18 app for the frontend.
- Exposes port 5173 (Vite default).
-
Supabase
- Local Supabase instance for database and authentication.
- Exposes ports 5432 (PostgreSQL), 8000 (Studio).
-
Redis
- Used for task scheduling and background job processing.
-
Worker Service
- Handles background translation jobs.
- Connects to Redis for task scheduling.
version: '3.8'
services:
api:
build: ./api
ports:
- "3000:3000"
environment:
- DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres
- REDIS_URL=redis://redis:6379
depends_on:
- supabase
- redis
frontend:
build: ./frontend
ports:
- "5173:5173"
environment:
- VITE_API_URL=http://localhost:3000
supabase:
image: supabase/postgres
ports:
- "5432:5432"
- "8000:8000"
environment:
- POSTGRES_PASSWORD=postgres
redis:
image: redis:alpine
ports:
- "6379:6379"
worker:
build: ./worker
environment:
- DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres
- REDIS_URL=redis://redis:6379
depends_on:
- supabase
- redis
-
API Development
- Use TypeScript with Express.js or Fastify.
- Write unit and integration tests with Jest or Vitest.
-
Frontend Development
- Use Vite for fast development.
- Write tests with React Testing Library.
-
Database Management
- Use Supabase Studio for schema management and migrations.
-
Deployment
- Deploy to a cloud provider (e.g., Vercel for frontend, Render for API).
- Use GitHub Actions or CircleCI for CI/CD.
This outline provides a solid foundation for your translation app. Let me know if you need further details or help with specific parts!
User
Update the plan with a metrics table, cost in/out, tokens in/out, speed, etc.
Also, change translate_job.target_language
to a JSONB translate_job.target_languages
. It will be an array of ISO languages. Add a translate_result
table to track progress and results for each target_language
and translate_job.id
. Use supabase realtime https://supabase.com/docs/guides/realtime?queryGroups=language&language=js
Deepseek
Here’s the updated project outline with the requested changes, including a metrics table, cost/token tracking, speed measurements, and the new translate_result
table for tracking progress per target language. Additionally, I’ve integrated Supabase Realtime for real-time updates.
-
translate_job
id
(UUID, primary key)user_id
(UUID, foreign key tousers
table)input_document
(text, markdown content)status
(text, e.g., "pending", "in_progress", "completed", "failed")created_at
(timestamp)updated_at
(timestamp)system_prompt
(text, customizable prompt for the LLM)llm_backend
(text, e.g., "openai", "anthropic", "cohere")llm_config
(jsonb, stores API keys, model name, temperature, etc.)target_languages
(jsonb, array of ISO language codes, e.g.,["es", "fr", "de"]
)
-
translate_result
id
(UUID, primary key)job_id
(UUID, foreign key totranslate_job
table)target_language
(text, ISO language code, e.g., "es")output_document
(text, translated markdown content)status
(text, e.g., "pending", "in_progress", "completed", "failed")created_at
(timestamp)updated_at
(timestamp)metrics
(jsonb, stores cost, tokens, speed, etc.)
-
metrics
id
(UUID, primary key)result_id
(UUID, foreign key totranslate_result
table)tokens_in
(integer, number of input tokens)tokens_out
(integer, number of output tokens)cost_in
(float, cost of input tokens in USD)cost_out
(float, cost of output tokens in USD)speed
(float, time taken in seconds)created_at
(timestamp)
-
users
(unchanged)id
(UUID, primary key)email
(text, unique)password_hash
(text, for authentication)created_at
(timestamp)updated_at
(timestamp)
-
llm_backend_config
(unchanged)id
(UUID, primary key)user_id
(UUID, foreign key tousers
table)backend_name
(text, e.g., "openai")api_key
(text, encrypted)default_model
(text, e.g., "gpt-4")created_at
(timestamp)updated_at
(timestamp)
The metrics
table will track cost, tokens, and speed for each translation result. This data will be populated by the Translation Service after each job is processed.
tokens_in
: Number of tokens in the input document.tokens_out
: Number of tokens in the output document.cost_in
: Cost of input tokens (based on LLM pricing).cost_out
: Cost of output tokens (based on LLM pricing).speed
: Time taken to process the translation (in seconds).
For OpenAI GPT-4:
- Input tokens: $0.03 per 1,000 tokens.
- Output tokens: $0.06 per 1,000 tokens.
- Speed: Time from job start to completion.
Supabase Realtime will be used to provide real-time updates to the frontend about job status and progress.
-
Enable Realtime for the
translate_job
andtranslate_result
tables in Supabase.alter publication supabase_realtime add table translate_job; alter publication supabase_realtime add table translate_result;
-
Subscribe to changes in the frontend:
import { createClient } from '@supabase/supabase-js'; const supabase = createClient(SUPABASE_URL, SUPABASE_ANON_KEY); const channel = supabase .channel('translation-jobs') .on('postgres_changes', { event: '*', schema: 'public', table: 'translate_job', }, (payload) => { console.log('Job update:', payload); }) .subscribe(); const resultChannel = supabase .channel('translation-results') .on('postgres_changes', { event: '*', schema: 'public', table: 'translate_result', }, (payload) => { console.log('Result update:', payload); }) .subscribe();
-
Update the frontend UI in real-time as job and result statuses change.
The frontend will now display real-time updates for translation jobs and results. Each job will show progress for all target languages.
-
Job Progress Card
- Displays the overall job status.
- Shows progress for each target language (e.g., "es: completed", "fr: in progress").
-
Result Metrics Card
- Displays metrics (tokens, cost, speed) for each completed translation.
-
Real-Time Updates
- Use Supabase Realtime to update the UI as jobs and results change.
No changes to the Docker Compose setup are required for these updates.
-
User Submits a Job
- Uploads a markdown document.
- Selects target languages (e.g.,
["es", "fr", "de"]
). - Submits the job via the API.
-
API Processes the Job
- Creates a
translate_job
record. - For each target language, creates a
translate_result
record with status "pending". - Uses background workers to process each target language.
- Creates a
-
Real-Time Updates
- The frontend subscribes to Supabase Realtime for updates.
- As each target language is processed, the
translate_result
status is updated.
-
Metrics Tracking
- After each translation, the
metrics
table is populated with cost, tokens, and speed.
- After each translation, the
-
User Views Results
- The frontend displays the translated documents and metrics for each target language.
Field | Description | Example Value |
---|---|---|
tokens_in |
Number of input tokens | 1,200 |
tokens_out |
Number of output tokens | 1,500 |
cost_in |
Cost of input tokens (USD) | 0.036 |
cost_out |
Cost of output tokens (USD) | 0.090 |
speed |
Time taken to process (seconds) | 12.5 |
- Input Tokens: Calculated based on the length of the input document.
- Output Tokens: Calculated based on the length of the translated document.
- Cost: Calculated using the LLM's pricing model (e.g., OpenAI GPT-4 pricing).
- Speed: Measured from job start to completion.
This updated plan includes all requested features and ensures real-time updates, detailed metrics tracking, and support for multiple target languages. Let me know if you need further refinements!
User Give me a prompt or multiple prompts to build this entire project, for a detail oriented AI engineer.
Deepseek Here’s a detailed prompt (or set of prompts) tailored for a detail-oriented AI engineer to build the entire project. These prompts are structured to ensure clarity, completeness, and alignment with the project goals.
Objective: Provide a high-level overview of the project and its goals.
Prompt:
You are tasked with building a **human language translation app** that includes a **Translation Service API** and a **React v18 + shadcn-ui frontend**. The app should allow users to upload markdown documents, translate them into multiple target languages using configurable LLM backends, and track progress and metrics in real-time.
Key features:
1. **Translation Service API**:
- Built with Docker Compose and Supabase.
- Written in high-quality TypeScript.
- Accepts markdown documents as input.
- Uses background jobs/task scheduling for translation.
- Supports multiple LLM backends (e.g., OpenAI GPT, Anthropic Claude, Cohere).
- Allows user-configurable API keys and credentials.
- Customizable target languages per job (stored as JSONB array).
- Customizable system prompts per language.
2. **Frontend**:
- Built with React v18 and shadcn-ui.
- Real-time updates using Supabase Realtime.
- Displays job progress, translated documents, and metrics (cost, tokens, speed).
3. **Metrics and Cost Tracking**:
- Track tokens in/out, cost in/out, and speed for each translation.
- Store metrics in a dedicated `metrics` table.
4. **Database Schema**:
- Use Supabase for PostgreSQL and authentication.
- Include tables for `translate_job`, `translate_result`, `metrics`, `users`, and `llm_backend_config`.
Deliverables:
- A fully functional Translation Service API.
- A modern, responsive frontend.
- Docker Compose setup for local development.
- Detailed documentation for setup, usage, and deployment.
Objective: Define the database schema and Supabase configuration.
Prompt:
Design and implement the database schema for the translation app using Supabase. The schema should include the following tables:
1. **`translate_job`**:
- `id` (UUID, primary key)
- `user_id` (UUID, foreign key to `users` table)
- `input_document` (text, markdown content)
- `status` (text, e.g., "pending", "in_progress", "completed", "failed")
- `created_at` (timestamp)
- `updated_at` (timestamp)
- `system_prompt` (text, customizable prompt for the LLM)
- `llm_backend` (text, e.g., "openai", "anthropic", "cohere")
- `llm_config` (jsonb, stores API keys, model name, temperature, etc.)
- `target_languages` (jsonb, array of ISO language codes, e.g., `["es", "fr", "de"]`)
2. **`translate_result`**:
- `id` (UUID, primary key)
- `job_id` (UUID, foreign key to `translate_job` table)
- `target_language` (text, ISO language code, e.g., "es")
- `output_document` (text, translated markdown content)
- `status` (text, e.g., "pending", "in_progress", "completed", "failed")
- `created_at` (timestamp)
- `updated_at` (timestamp)
- `metrics` (jsonb, stores cost, tokens, speed, etc.)
3. **`metrics`**:
- `id` (UUID, primary key)
- `result_id` (UUID, foreign key to `translate_result` table)
- `tokens_in` (integer, number of input tokens)
- `tokens_out` (integer, number of output tokens)
- `cost_in` (float, cost of input tokens in USD)
- `cost_out` (float, cost of output tokens in USD)
- `speed` (float, time taken in seconds)
- `created_at` (timestamp)
4. **`users`**:
- `id` (UUID, primary key)
- `email` (text, unique)
- `password_hash` (text, for authentication)
- `created_at` (timestamp)
- `updated_at` (timestamp)
5. **`llm_backend_config`**:
- `id` (UUID, primary key)
- `user_id` (UUID, foreign key to `users` table)
- `backend_name` (text, e.g., "openai")
- `api_key` (text, encrypted)
- `default_model` (text, e.g., "gpt-4")
- `created_at` (timestamp)
- `updated_at` (timestamp)
Tasks:
1. Write SQL scripts to create these tables in Supabase.
2. Enable Supabase Realtime for the `translate_job` and `translate_result` tables.
3. Document the schema and relationships between tables.
Objective: Build the Translation Service API.
Prompt:
Develop the **Translation Service API** using TypeScript, Docker Compose, and Supabase. The API should include the following services:
1. **Job Management Service**:
- REST endpoints:
- `POST /jobs` (create a new job)
- `GET /jobs/:id` (get job status and result)
- `GET /jobs` (list all jobs for a user)
- `DELETE /jobs/:id` (delete a job)
2. **Translation Service**:
- Processes translation jobs in the background using task scheduling (e.g., BullMQ).
- Integrates with multiple LLM backends (e.g., OpenAI, Anthropic, Cohere).
- Updates the `translate_result` table with progress and metrics.
3. **LLM Backend Integration Service**:
- Abstracts interactions with different LLM backends.
- Provides a unified interface for sending requests and receiving responses.
4. **Authentication Service**:
- Uses Supabase Auth for user authentication and authorization.
5. **Metrics Tracking**:
- Populates the `metrics` table with tokens, cost, and speed for each translation.
Tasks:
1. Write TypeScript code for the API services.
2. Set up Docker Compose for local development.
3. Write unit and integration tests for the API.
4. Document the API endpoints and usage.
Objective: Build the React v18 + shadcn-ui frontend.
Prompt:
Develop the frontend for the translation app using **React v18** and **shadcn-ui**. The frontend should include the following features:
1. **Pages**:
- Login / Register
- Dashboard (list of translation jobs)
- Create Job (upload markdown, select target languages, customize system prompt)
- Job Details (view job status, translated documents, and metrics)
- LLM Backend Configuration (add/update API keys and models)
- User Settings (update profile and password)
2. **Components**:
- Header (navigation bar)
- Job Card (displays job status and actions)
- Markdown Viewer (renders markdown content)
- LLM Config Form (add/update LLM backend configurations)
3. **Real-Time Updates**:
- Use Supabase Realtime to subscribe to changes in `translate_job` and `translate_result`.
- Update the UI in real-time as jobs and results change.
4. **Styling**:
- Use shadcn-ui for pre-built, customizable components.
- Use Tailwind CSS for utility-first styling.
Tasks:
1. Write React components and pages.
2. Integrate Supabase Realtime for real-time updates.
3. Write tests for the frontend.
4. Document the frontend setup and usage.
Objective: Implement metrics and cost tracking.
Prompt:
Implement metrics and cost tracking for the translation app. The system should:
1. Track **tokens in/out**, **cost in/out**, and **speed** for each translation.
2. Store metrics in the `metrics` table.
3. Calculate costs based on LLM pricing (e.g., OpenAI GPT-4 pricing).
Tasks:
1. Write code to calculate tokens, cost, and speed for each translation.
2. Populate the `metrics` table with this data.
3. Display metrics in the frontend (e.g., in the Job Details page).
4. Document the metrics calculation and storage process.
Objective: Deploy the app and provide documentation.
Prompt:
Deploy the translation app to a cloud provider (e.g., Vercel for frontend, Render for API). Provide detailed documentation for:
1. **Local Development**:
- Docker Compose setup.
- Supabase configuration.
2. **Deployment**:
- Steps to deploy the API and frontend.
- Environment variables and configuration.
3. **Usage**:
- How to use the API and frontend.
- Example workflows.
4. **Testing**:
- How to run unit and integration tests.
These prompts provide a clear, step-by-step guide for a detail-oriented AI engineer to build the entire project. Let me know if you need further refinements!
User Provide instructions for Cline Code.
Deepseek Here’s a detailed set of instructions for Claude Code (or any AI engineer) to build the entire project. These instructions are structured to ensure clarity and completeness, covering all aspects of the project from setup to deployment.
-
Clone the Repository:
git clone https://github.com/your-username/translation-app.git cd translation-app
-
Set Up Docker Compose:
- Create a
docker-compose.yml
file with the following services:version: '3.8' services: api: build: ./api ports: - "3000:3000" environment: - DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres - REDIS_URL=redis://redis:6379 depends_on: - supabase - redis frontend: build: ./frontend ports: - "5173:5173" environment: - VITE_API_URL=http://localhost:3000 supabase: image: supabase/postgres ports: - "5432:5432" - "8000:8000" environment: - POSTGRES_PASSWORD=postgres redis: image: redis:alpine ports: - "6379:6379" worker: build: ./worker environment: - DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres - REDIS_URL=redis://redis:6379 depends_on: - supabase - redis
- Create a
-
Set Up Supabase:
- Create a Supabase project at supabase.com.
- Enable Realtime for the
translate_job
andtranslate_result
tables:alter publication supabase_realtime add table translate_job; alter publication supabase_realtime add table translate_result;
-
Set Up Environment Variables:
- Create a
.env
file in theapi
directory:DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres REDIS_URL=redis://redis:6379 SUPABASE_URL=your-supabase-url SUPABASE_ANON_KEY=your-supabase-anon-key
- Create a
-
Create Tables:
- Run the following SQL scripts in Supabase SQL Editor:
-- Users table create table users ( id uuid primary key default uuid_generate_v4(), email text unique not null, password_hash text not null, created_at timestamp default now(), updated_at timestamp default now() ); -- LLM Backend Config table create table llm_backend_config ( id uuid primary key default uuid_generate_v4(), user_id uuid references users(id), backend_name text not null, api_key text not null, default_model text not null, created_at timestamp default now(), updated_at timestamp default now() ); -- Translate Job table create table translate_job ( id uuid primary key default uuid_generate_v4(), user_id uuid references users(id), input_document text not null, status text not null default 'pending', created_at timestamp default now(), updated_at timestamp default now(), system_prompt text, llm_backend text not null, llm_config jsonb, target_languages jsonb not null ); -- Translate Result table create table translate_result ( id uuid primary key default uuid_generate_v4(), job_id uuid references translate_job(id), target_language text not null, output_document text, status text not null default 'pending', created_at timestamp default now(), updated_at timestamp default now(), metrics jsonb ); -- Metrics table create table metrics ( id uuid primary key default uuid_generate_v4(), result_id uuid references translate_result(id), tokens_in integer not null, tokens_out integer not null, cost_in float not null, cost_out float not null, speed float not null, created_at timestamp default now() );
- Run the following SQL scripts in Supabase SQL Editor:
-
Enable Realtime:
- Enable Realtime for the
translate_job
andtranslate_result
tables as shown earlier.
- Enable Realtime for the
-
Set Up the API:
- Create an
api
directory and initialize a Node.js project:mkdir api cd api npm init -y npm install express typescript ts-node @types/node supabase redis bullmq
- Create an
-
Write API Code:
- Create an
index.ts
file:import express from 'express'; import { createClient } from '@supabase/supabase-js'; import { Queue } from 'bullmq'; const app = express(); const supabase = createClient(process.env.SUPABASE_URL, process.env.SUPABASE_ANON_KEY); const redisConnection = { connection: { host: 'redis', port: 6379 } }; const translationQueue = new Queue('translation', redisConnection); app.use(express.json()); // Job creation endpoint app.post('/jobs', async (req, res) => { const { input_document, target_languages, system_prompt, llm_backend, llm_config } = req.body; const job = await supabase.from('translate_job').insert({ input_document, target_languages, system_prompt, llm_backend, llm_config, status: 'pending' }).single(); res.json(job); }); // Job status endpoint app.get('/jobs/:id', async (req, res) => { const { id } = req.params; const job = await supabase.from('translate_job').select('*').eq('id', id).single(); res.json(job); }); app.listen(3000, () => console.log('API running on port 3000'));
- Create an
-
Set Up Background Workers:
- Create a
worker.ts
file:import { Worker } from 'bullmq'; import { createClient } from '@supabase/supabase-js'; const supabase = createClient(process.env.SUPABASE_URL, process.env.SUPABASE_ANON_KEY); const redisConnection = { connection: { host: 'redis', port: 6379 } }; const worker = new Worker('translation', async (job) => { const { input_document, target_languages, system_prompt, llm_backend, llm_config } = job.data; // Implement translation logic here }, redisConnection); worker.on('completed', (job) => { console.log(`Job ${job.id} completed`); });
- Create a
-
Set Up the Frontend:
- Create a
frontend
directory and initialize a React project:mkdir frontend cd frontend npm create vite@latest . -- --template react-ts npm install @supabase/supabase-js shadcn-ui
- Create a
-
Write React Components:
- Create a
JobCard.tsx
component:import { useEffect, useState } from 'react'; import { createClient } from '@supabase/supabase-js'; const supabase = createClient(process.env.VITE_SUPABASE_URL, process.env.VITE_SUPABASE_ANON_KEY); export default function JobCard({ jobId }: { jobId: string }) { const [job, setJob] = useState(null); useEffect(() => { const channel = supabase .channel('translation-jobs') .on('postgres_changes', { event: '*', schema: 'public', table: 'translate_job', filter: `id=eq.${jobId}` }, (payload) => { setJob(payload.new); }) .subscribe(); return () => { channel.unsubscribe(); }; }, [jobId]); return ( <div> <h2>Job Status: {job?.status}</h2> <p>Input Document: {job?.input_document}</p> </div> ); }
- Create a
-
Deploy the API:
- Use a service like Render or Heroku to deploy the API.
-
Deploy the Frontend:
- Use Vercel to deploy the React frontend.
-
Set Up CI/CD:
- Use GitHub Actions or CircleCI for continuous integration and deployment.
These instructions provide a step-by-step guide for building the entire project. Let me know if you need further assistance!
User Can you give me instructions for Cursor?
Deepseek Certainly! Below are detailed instructions for using Cursor, an AI-powered code editor, to build the Translation App project. These instructions assume you’re familiar with Cursor and its features, such as AI autocomplete, code generation, and debugging.
-
Install Cursor:
- Download and install Cursor from cursor.sh.
- Open Cursor and log in to your account.
-
Create a New Project:
- In Cursor, click File > New Project.
- Name the project
translation-app
and choose a directory.
-
Set Up Docker Compose:
- Create a
docker-compose.yml
file in the root directory. - Use Cursor’s AI to generate the file by typing:
/create docker-compose.yml for a translation app with Supabase, Redis, and a Node.js API
- Paste the following content:
version: '3.8' services: api: build: ./api ports: - "3000:3000" environment: - DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres - REDIS_URL=redis://redis:6379 depends_on: - supabase - redis frontend: build: ./frontend ports: - "5173:5173" environment: - VITE_API_URL=http://localhost:3000 supabase: image: supabase/postgres ports: - "5432:5432" - "8000:8000" environment: - POSTGRES_PASSWORD=postgres redis: image: redis:alpine ports: - "6379:6379" worker: build: ./worker environment: - DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres - REDIS_URL=redis://redis:6379 depends_on: - supabase - redis
- Create a
-
Set Up Supabase:
- Create a Supabase project at supabase.com.
- Enable Realtime for the
translate_job
andtranslate_result
tables:alter publication supabase_realtime add table translate_job; alter publication supabase_realtime add table translate_result;
-
Set Up Environment Variables:
- Create a
.env
file in theapi
directory:DATABASE_URL=postgres://postgres:postgres@supabase:5432/postgres REDIS_URL=redis://redis:6379 SUPABASE_URL=your-supabase-url SUPABASE_ANON_KEY=your-supabase-anon-key
- Create a
-
Create Tables:
- Use Cursor’s AI to generate SQL scripts:
/generate SQL script for a translation app with Supabase
- Paste the following SQL into Supabase’s SQL Editor:
-- Users table create table users ( id uuid primary key default uuid_generate_v4(), email text unique not null, password_hash text not null, created_at timestamp default now(), updated_at timestamp default now() ); -- LLM Backend Config table create table llm_backend_config ( id uuid primary key default uuid_generate_v4(), user_id uuid references users(id), backend_name text not null, api_key text not null, default_model text not null, created_at timestamp default now(), updated_at timestamp default now() ); -- Translate Job table create table translate_job ( id uuid primary key default uuid_generate_v4(), user_id uuid references users(id), input_document text not null, status text not null default 'pending', created_at timestamp default now(), updated_at timestamp default now(), system_prompt text, llm_backend text not null, llm_config jsonb, target_languages jsonb not null ); -- Translate Result table create table translate_result ( id uuid primary key default uuid_generate_v4(), job_id uuid references translate_job(id), target_language text not null, output_document text, status text not null default 'pending', created_at timestamp default now(), updated_at timestamp default now(), metrics jsonb ); -- Metrics table create table metrics ( id uuid primary key default uuid_generate_v4(), result_id uuid references translate_result(id), tokens_in integer not null, tokens_out integer not null, cost_in float not null, cost_out float not null, speed float not null, created_at timestamp default now() );
- Use Cursor’s AI to generate SQL scripts:
-
Enable Realtime:
- Enable Realtime for the
translate_job
andtranslate_result
tables as shown earlier.
- Enable Realtime for the
-
Set Up the API:
- Use Cursor to create an
api
directory and initialize a Node.js project:/create Node.js API for a translation app
- Paste the following code into
api/index.ts
:import express from 'express'; import { createClient } from '@supabase/supabase-js'; import { Queue } from 'bullmq'; const app = express(); const supabase = createClient(process.env.SUPABASE_URL, process.env.SUPABASE_ANON_KEY); const redisConnection = { connection: { host: 'redis', port: 6379 } }; const translationQueue = new Queue('translation', redisConnection); app.use(express.json()); // Job creation endpoint app.post('/jobs', async (req, res) => { const { input_document, target_languages, system_prompt, llm_backend, llm_config } = req.body; const job = await supabase.from('translate_job').insert({ input_document, target_languages, system_prompt, llm_backend, llm_config, status: 'pending' }).single(); res.json(job); }); // Job status endpoint app.get('/jobs/:id', async (req, res) => { const { id } = req.params; const job = await supabase.from('translate_job').select('*').eq('id', id).single(); res.json(job); }); app.listen(3000, () => console.log('API running on port 3000'));
- Use Cursor to create an
-
Set Up Background Workers:
- Use Cursor to create a
worker.ts
file:/create background worker for a translation app
- Paste the following code:
import { Worker } from 'bullmq'; import { createClient } from '@supabase/supabase-js'; const supabase = createClient(process.env.SUPABASE_URL, process.env.SUPABASE_ANON_KEY); const redisConnection = { connection: { host: 'redis', port: 6379 } }; const worker = new Worker('translation', async (job) => { const { input_document, target_languages, system_prompt, llm_backend, llm_config } = job.data; // Implement translation logic here }, redisConnection); worker.on('completed', (job) => { console.log(`Job ${job.id} completed`); });
- Use Cursor to create a
- Set Up the Frontend:
- Use Cursor to create a
frontend
directory and initialize a React project:/create React frontend for a translation app
- Paste the following code into
frontend/src/JobCard.tsx
:import { useEffect, useState } from 'react'; import { createClient } from '@supabase/supabase-js'; const supabase = createClient(process.env.VITE_SUPABASE_URL, process.env.VITE_SUPABASE_ANON_KEY); export default function JobCard({ jobId }: { jobId: string }) { const [job, setJob] = useState(null); useEffect(() => { const channel = supabase .channel('translation-jobs') .on('postgres_changes', { event: '*', schema: 'public', table: 'translate_job', filter: `id=eq.${jobId}` }, (payload) => { setJob(payload.new); }) .subscribe(); return () => { channel.unsubscribe(); }; }, [jobId]); return ( <div> <h2>Job Status: {job?.status}</h2> <p>Input Document: {job?.input_document}</p> </div> ); }
- Use Cursor to create a
-
Deploy the API:
- Use a service like Render or Heroku to deploy the API.
-
Deploy the Frontend:
- Use Vercel to deploy the React frontend.
-
Set Up CI/CD:
- Use GitHub Actions or CircleCI for continuous integration and deployment.
These instructions leverage Cursor’s AI capabilities to streamline development. Let me know if you need further assistance!