Created
September 3, 2012 21:09
-
-
Save jwbargsten/3613577 to your computer and use it in GitHub Desktop.
correlation analysis - light intensity experiment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (c) 2012 Joachim Bargsten | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated | |
# documentation files (the "Software"), to deal in the Software without restriction, including without | |
# limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, subject to the following | |
# conditions: | |
# The above copyright notice and this permission notice shall be included in all copies or substantial | |
# portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT | |
# LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO | |
# EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN | |
# AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE | |
# OR OTHER DEALINGS IN THE SOFTWARE. | |
library(colorRamps) | |
library(grid) | |
library(reshape2) | |
library(reshape) | |
library(scales) | |
library(ggplot2) | |
library(plyr) | |
library(gdata) | |
library(Hmisc) | |
comma_format2 <- function (...) { function(x) comma(round(x,2), ...) } | |
data.raw <- read.csv("correlation_hanzi_2012-08-20.csv") | |
correlation_heatmap_file <- "correlation_matrix.fdr.png" | |
correlation_boxplot_file <- "light-intensity_vs_all.png" | |
correlation_boxplot_jitter_file <- "light-intensity_vs_all-jitter.png" | |
correlation_data_file <- "correlation.results.csv" | |
data <- data.raw[, names(data.raw) != "repetition"] | |
## omit na introduced by excel | |
data <- data[!is.na(data[,"genotypes"]),] | |
## show NAs | |
colwise(function(x) { sum(is.na(x)) })(data) | |
## replace NA by mean per genotype | |
data.nona <- ddply( | |
data, | |
.(genotypes), | |
colwise(function(x) { if(is.numeric(x)) x[is.na(x)] <- mean(na.omit(x)); x }) | |
) | |
## check again for NAs | |
colwise(function(x) { sum(is.na(x)) })(data.nona) | |
## normalise data | |
data.scaled <- colwise(function(x) { if(is.numeric(x)) return(scale(x)); x })(data.nona) | |
## rearrange rows for correlation analysis | |
## (makes it easier to extract the correlation and p-values as submatrix) | |
first_rows <- c("genotypes", "light_intensity") | |
data.scaled <- cbind( | |
data.scaled[,names(data.scaled) %in% first_rows], | |
data.scaled[,!names(data.scaled) %in% first_rows] | |
) | |
## only do the correlation on numeric columns | |
data.numcols <- unlist(colwise(is.numeric)(data.scaled)) | |
## do the correlation by genotype | |
ds.cor <- ddply( | |
data.scaled, | |
.(genotypes), | |
function(ds,numcols) { | |
## what is the genotype of the subset | |
genotype <- ds[1,"genotypes"] | |
## calculate the correlation of all numeric columns | |
ds.corprob <- rcorr(as.matrix(ds[,numcols]), type="pearson") | |
ds.corprob$P[!is.na(ds.corprob$P)] <- p.adjust(ds.corprob$P[!is.na(ds.corprob$P)], method="fdr") | |
## separate light intensity from the rest | |
ds.cor <- ds.corprob$r[-1,1] | |
ds.prob <- t(ds.corprob$P[1,-1])[1,] | |
ds.cor.long <- data.frame( | |
test=names(ds.cor), | |
correlation=ds.cor, | |
p.value=ds.prob, | |
genotypes=rep(genotype, length(ds.cor)), | |
covariates=rep("light_intensity", length(ds.cor)) | |
) | |
ds.cor.long | |
}, | |
data.numcols | |
) | |
## create the heatmap plot | |
p <- ggplot(ds.cor, aes(test, genotypes)) + | |
geom_tile(data=subset(ds.cor, !is.na(correlation) & p.value < 0.05), aes(fill=correlation),colour="white") + | |
scale_fill_gradient2(low="steelblue", high="darkred",breaks=seq(-0.7,0.7,0.1), labels=comma_format2()) + | |
geom_tile(data=subset(ds.cor, is.na(correlation) | p.value > 0.05 ), aes(colour=NA, fill=correlation), linetype=1, fill="#dfdfdf", colour="white") | |
p <- p + opts( | |
axis.ticks = theme_blank(), | |
axis.text.x = theme_text(angle=90,vjust=0,hjust=1), | |
axis.text.y = theme_text(face="bold", size=8, hjust=1) | |
) | |
p <- p + scale_y_discrete( expand=c(0,0)) + scale_x_discrete(expand=c(0,0)) | |
## plot the heatmap | |
png(correlation_heatmap_file,res=300, width=19, height=17, units="cm") | |
p + facet_grid(covariates ~ .) | |
dev.off() | |
## create a boxplot of all vs light intenisty | |
png(correlation_boxplot_file,res=300, width=30, height=20, units="cm") | |
data.box <- data.nona | |
data.box[,"light_intensity"] <- as.factor(as.character(data.box[,"light_intensity"])) | |
data.box.long <- melt(data.box) | |
p <- ggplot(data.box.long, aes(light_intensity, value)) + | |
geom_boxplot() + | |
facet_wrap(~ variable, scales="free") | |
p | |
dev.off() | |
## same as above, only with data points included | |
png(correlation_boxplot_jitter_file,res=300, width=30, height=20, units="cm") | |
p + geom_jitter(aes(light_intensity, value, colour=genotypes)) | |
dev.off() | |
write.csv(ds.cor, correlation_data_file) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment