Last active
August 29, 2015 14:22
-
-
Save jwinternheimer/13907ca5d6bb6a45f95a to your computer and use it in GitHub Desktop.
diversity-app
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library("XML") | |
library("ggplot2") | |
library("downloader") | |
library('scales') | |
library('grid') | |
library('RColorBrewer') | |
function(input, output) { | |
team_url <- 'https://docs.google.com/spreadsheets/u/1/d/1E9WwcIEYuGxR8GUrmxL1iaozOk_0FKSPPWbnCDn_C0A/pubhtml' | |
applicants_url <- "https://docs.google.com/spreadsheets/d/11GXSEkgDnLIBWmqYWJA1VbG9xmsPPl2MFRWxvFiWmwQ/pubhtml" | |
urls <- list(team = team_url, applicants = applicants_url) | |
applicants_data <- readGoogleSheet(applicants_url, 'applicants') | |
applicants_data <- cleanUpData(applicants_data) | |
team_data <- readGoogleSheet(team_url, 'team') | |
team_data <- cleanUpData(team_data) | |
## RETURN REQUESTED DATASET | |
datasetInput <- reactive({ | |
switch(input$dataset, | |
"The Buffer Team" = team_data, | |
"Applicants" = applicants_data) | |
}) | |
#plots | |
output$genderPlot <- renderPlot({ | |
data <- datasetInput() | |
department_and_gender <- data %>% | |
group_by(department,gender) %>% | |
summarise(n=n()) %>% | |
mutate(percent=n/sum(n),department_size=sum(n)) | |
ggplot(department_and_gender, aes(x=reorder(department,-department_size), y=n, fill=gender)) + | |
geom_bar(stat="identity") + scale_fill_brewer(palette="Pastel1") + | |
labs(x="Area",y="Number of People", title="Gender Breakdown Across Areas") | |
}) | |
output$genderTimeSeries <- renderPlot({ | |
data <- datasetInput() | |
time_and_gender <- data %>% | |
group_by(posixDate,gender) %>% | |
summarise(n=n()) | |
ggplot(time_and_gender, aes(x=posixDate, y=n, fill=gender)) + | |
geom_bar(stat="identity") + | |
scale_color_brewer(palette="Pastel1") + | |
labs(x="Date",y="People", title="Gender of Applicants") + | |
theme_minimal() | |
}) | |
output$ethnicityTimeSeries <- renderPlot({ | |
data <- datasetInput() | |
data <- data[-1,] | |
data$posixDateTime <- as.POSIXct(data$date,format="%m/%d/%Y %H:%M:%S") | |
data$posixDate <- as.Date(data$posixDateTime) | |
time_and_ethnicity <- data %>% | |
group_by(posixDate,ethnicity) %>% | |
summarise(n=n()) | |
ggplot(time_and_ethnicity, aes(x=posixDate, y=n, fill=ethnicity)) + | |
geom_bar(stat="identity") + | |
scale_fill_brewer(palette="Pastel1") + | |
labs(x="Date",y="People", title="Ethnicity of Applicants") + | |
theme_minimal() | |
}) | |
output$ethnicityPlot <- renderPlot({ | |
data <- datasetInput() | |
department_and_ethnicity <- data %>% | |
group_by(department,ethnicity) %>% | |
summarise(n=n()) %>% | |
mutate(percent=n/sum(n),department_size=sum(n)) | |
ggplot(department_and_ethnicity, aes(x=reorder(department,department_size), y=n, fill=ethnicity)) + | |
geom_bar(stat="identity") + coord_flip() + | |
labs(x="Area",y="People", title="Ethnicity Breakdown Across Areas") + | |
scale_fill_brewer(palette="Pastel1") | |
}) | |
output$ethnicityPies <- renderPlot({ | |
data <- datasetInput() | |
by_ethnicity <- data %>% | |
group_by(department,ethnicity) %>% | |
summarise(n=n()) %>% | |
mutate(percent=n/sum(n)) | |
total_ethnicity_row <- data %>% | |
group_by(ethnicity) %>% | |
summarise(n=n()) %>% | |
mutate(percent=n/sum(n),department="Total") | |
total_ethnicity_breakdown <- rbind(by_ethnicity,total_ethnicity_row) | |
ggplot(total_ethnicity_breakdown,aes(x=factor(1),y=percent,fill=ethnicity)) + | |
geom_bar(stat="identity",width=1) + | |
facet_wrap(~department) + | |
coord_polar(theta="y") + | |
scale_fill_brewer(palette="Pastel1") + | |
theme_minimal() + | |
theme(axis.ticks = element_blank(), axis.text.y = element_blank(), axis.text.x = element_blank()) + | |
labs(x="",y="",title="Ethnicity Breakdown Across Areas") | |
}) | |
output$genderPies <- renderPlot({ | |
data <- datasetInput() | |
department_and_gender <- data %>% | |
group_by(department,gender) %>% | |
summarise(n=n()) %>% | |
mutate(percent=n/sum(n)) | |
total_row <- data %>% | |
group_by(gender) %>% | |
summarise(n=n()) %>% | |
mutate(percent=n/sum(n),department="Total") | |
total_gender_breakdown <- rbind(department_and_gender,total_row) | |
total_gender_breakdown$gender <- factor(total_gender_breakdown$gender,levels=rev(levels(total_gender_breakdown$gender))) | |
ggplot(total_gender_breakdown,aes(x=factor(1),y=percent,fill=gender)) + | |
geom_bar(stat="identity",width=1) + | |
facet_wrap(~department) + | |
coord_polar(theta="y") + | |
scale_fill_brewer(palette="Pastel1") + | |
theme_minimal() + | |
theme(axis.ticks = element_blank(), axis.text.y = element_blank(), axis.text.x = element_blank()) + | |
labs(x="",y="",title="Gender Breakdown Across Areas :)") | |
}) | |
#raw data | |
output$teamTable <- renderTable(team_data) | |
output$applicantsTable <- renderTable(applicants_data) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment