Created
April 28, 2015 16:19
-
-
Save jwinternheimer/1dbc45ad01a17bf1ddb1 to your computer and use it in GitHub Desktop.
Growth Exploration
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(data.table); library(dplyr); library(tidyr); library(plyr) | |
library(ggplot2); library(scales); library(grid); library(RColorBrewer) | |
################################################## | |
## Number of Profiles for Awesome Users | |
################################################## | |
## Import and Tidy Data | |
awesome_active_profiles <- read.table("~/Downloads/awesome_active_profiles.csv",sep=",",header=T) | |
names(awesome_active_profiles) <- c("user_id","active_profiles") | |
## Create Histogram of Number of Profiles Connected | |
awesome_profiles_hist <- ggplot(awesome_active_profiles,aes(x=active_profiles)) + | |
geom_histogram(binwidth=1,color="white",fill="black",alpha=0.6) + | |
labs(x="Profiles Connected", y="Users", title="Awesome Users Profiles Connected") + | |
scale_x_continuous(limits=c(0,15),breaks=seq(0,15,1)) + | |
theme(panel.grid.major=element_line(size=.25)) + theme(panel.grid.minor=element_blank()) + | |
theme(axis.ticks=element_blank()) + theme(panel.grid.major.x = element_blank(),panel.grid.minor.x = element_blank()) | |
################################################## | |
## Breakdown of Profile Types | |
################################################## | |
## Import and Tidy Data | |
profile_types <- read.table("~/Downloads/profile_types.csv",sep=",",header=T) | |
names(profile_types) <- c("user_id","facebook_profiles","linkedin_profiles","twitter_profiles","total_profiles") | |
profile_types <- profile_types %>% | |
mutate(other_profiles = total_profiles - (facebook_profiles + linkedin_profiles + twitter_profiles)) | |
## Gather Profile types and make bar chart | |
gathered_profiles <- profile_types %>% | |
gather(type,count,facebook_profiles:other_profiles) | |
total_profiles <- gathered_profiles %>% | |
filter(type != "total_profiles") %>% | |
group_by(type) %>% | |
summarise(total = sum(count)) %>% | |
mutate(prop = total/sum(total)) | |
total_profiles$type <- revalue(total_profiles$type,c("facebook_profiles"="Facebook", | |
"linkedin_profiles"="Linkedin", | |
"twitter_profiles"="Twitter", | |
"total_profiles"="Total", | |
"other_profiles"="Other")) | |
## Bar Chart | |
profile_bar <- ggplot(total_profiles,aes(x=type,y=prop)) + geom_bar(stat="identity",alpha=0.6) + | |
geom_text(aes(label=round(prop,2)),vjust=-0.2) + labs(x="Profile_Type",y="Proportion of All Profiles") + | |
theme(panel.grid.major=element_line(size=.25)) + theme(panel.grid.minor=element_blank()) + | |
theme(axis.ticks=element_blank()) + theme(panel.grid.major.x = element_blank(),panel.grid.minor.x = element_blank()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment